RESTORATION ADVISORY BOARD MEETING

WEDNESDAY, JANUARY 29, 2003

NATIONAL CITY, CALIFORNIA

REPORTED BY: Nancy A. Lee, CSR No. 3870

1	A T T E N D	A N C E		
2	NAVY REGION SOUTHWEST:	Ms. :	Theresa Morlev	
3				
4	SOUTHWEST DIVISION NAVAL FACILITIES ENGINEERING			
5	COMMAND:		Ed Dias Mike Corry	
6		P1L • 1	TIRE COILY	
7	DTSC:		Douglas Bautista Dave Murchison	
8		Mr.	Dave Murchison	
9	BECHTEL NATIONAL:		Tim Heironimus	
10			Karen G. Collins Pete Stang	
11	DVD. 10 MODES OFFICED	9		
12	PUBLIC WORKS OFFICER:	Comma	mander James Wink	
13	FOSTER/WHEELER ENVIRONMENTAL:	Man	Glenn Starr	
14	ENVIRONMENTAL:	Mr.		
15	DUDITO AMMENDANCE.	Me	Anita Boyd Nancy Lee	
16	PUBLIC ATTENDANCE:			
17	DAD MEMBERS		D	
18	RAB MEMBERS:	Mr.	Peter Bishop Jerry McNutt	
19		MS. I	Rita McIntyre	
20				
21				
22				
23				
24				
25				

- 1 NATIONAL CITY, CA., WEDNESDAY, JANUARY 29, 2003
- 2 5:38 P.M.

3

- 17:38:41 4 MS. MORLEY: Welcome everybody.
- 17:38:45 5 I was told today that this is the
- 17:38:48 6 last -- this club is going to be remodeling, so
- 17:38:51 7 this will be the last meeting here for probably
- 17:38:53 8 this year. They're going to start March 1st
- 17:38:56 9 through December. Elizabeth, the club manager, is
- 17:38:58 10 going to find us some place else on Naval Station,
- 17:39:01 11 possibly the Mariner's Club, but that might mean
- 17:39:01 12 that we have to move to a Thursday.
- 17:39:07 14 anybody? Okay. So we'll let you know. We'll
- 17:39:13 15 have maps and a big sign so you know not to come
- 17:39:16 16 here next time.
- 17:39:17 17 Introductions: I think you know
- 17:39:18 18 everybody except for Mike Corry. He used to be an
- 17:39:23 19 intern and now he's actually a real employee, so
- 17:39:26 20 we have to be a lot nicer to him. He's going to
- 17:39:33 21 be taking over the 28th Street gas station, Site
- 17:39:37 22 10?
- 17:39:37 23 MR. CORRY: Site 10.
- 17:39:39 24 MS. MORLEY: So he'll be helping out Darren
- 17:39:41 25 and Ed. Darren's sick tonight, so he's at home.

- 17:39:44 1 And I think you guys know Glenn Starr
- 17:39:45 2 from Foster/Wheeler. He was here about a year ago
- 17:39:51 3 talking about Site 2, and I think you remember
- 17:39:53 4 everybody else.
- 17:39:54 5 Does anyone have any comments on the
- 17:39:57 6 meeting minutes from the last RAB? Okay. We'll
- 17:40:00 7 consider those approved.
- 17:40:02 8 With that, Glenn, we'll start off with
- 17:40:03 9 you. Glenn is going to talk about the progress
- 17:40:06 10 made on Sub-Site 2A, which is a removal action at
- 17:40:09 11 the Mole pier.
- 17:40:17 12 MR. STARR: As Theresa mentioned, my name
- 17:40:18 13 is Glenn Starr. I'm the project manager for the
- 17:40:22 14 Mole pier project at Sub-Site 2A, and I've been
- 17:40:25 15 that project manager for about the last three
- 17:40:27 16 years.
- 17:40:28 17 I'll start out with a little bit of
- 17:40:49 18 history at Sub-Site 2A. Actually, RI Site 2 was
- 17:40:53 19 created in 1942 with hydraulic fill material.
- 17:40:56 20 From approximately 1945 to 1972 much of IR
- 17:41:00 21 Sub-Site 2A, a smaller portion of Site 2, was used
- 17:41:04 22 for disposal and open burning of demolition debris
- 17:41:05 23 and hazardous waste.
- 17:41:09 24 The petroleum based materials
- 17:41:10 25 including gasoline, motor oil, and diesel fuel

- 17:41:11 1 were transported to the site, and they were used
- 17:41:17 2 to assist in the open burning of debris and
- 17:41:18 3 combustible materials.
- 17:41:20 4 The waste included pilings, lumber,
- 17:41:25 5 concrete, asphalt, and other combustible and
- 17:41:27 6 non-combustible materials, and this all came from
- 17:41:31 7 the former Navy repair base and the Navy Public
- 17:41:34 8 Works Center and from state and maintenance
- 17:41:35 9 operations. The area was finally covered with
- 17:41:41 10 fill material after the waste at Mole pier was
- 17:41:43 11 completed in 1972.
- 17:41:45 12 We were tasked and put under contract
- 17:41:45 13 by the Navy to perform a remedial action at Site
- 17:41:45 14 2. The purpose of this non-time critical removal
- 17:41:45 15 action was two purposes --
 - 16 (At this time the power was
 - 17 temporarily shut off, and there was a brief recess
 - 18 while the problem was corrected.)
- 17:47:26 19 As I was starting to say, the purpose
- 17:47:28 20 of the non-time critical removal action is
- 17:47:30 21 actually two goals in one. One was to reduce the
- 17:47:32 22 contaminated soil concentrations to levels that
- 17:47:35 23 were protective of the human health and provide
- 17:47:38 24 unrestricted future land use for the site; and the
- 17:47:40 25 second was to contain, reduce or eliminate

- 17:47:43 1 exposure pathways for the contaminated sediments
- 17:47:44 2 or I should say the contaminated soil.
- 17:47:49 3 There were five primary chemicals of
- 17:47:54 4 concern originally identified within the removal
- 17:47:54 5 action, the first being arsenic; the second was
- 17:47:57 6 hexavalent chromium; dioxins, lead, and various
- 17:47:59 7 polyaeromatic hydrocarbons or PAHs.
- 17:48:06 8 Sub-Site 2A is approximately six and a
- 17:48:09 9 half acres in size and extends from the western
- 17:48:11 10 border of the Mole pier to approximately 750 feet.
- 17:48:15 11 Most of the area today is paved with asphalt and
- 17:48:18 12 concrete, and contains some work areas for the
- 17:48:21 13 Public Works center and parking areas and
- 17:48:24 14 greenbelts.
- 17:48:26 15 This is a drawing of Sub-Site 2A and
- 17:48:31 16 was actually how Sub-Site 2A existed before our
- 17:48:34 17 removal action. Sub-Site 2A is bordered by this
- 17:48:35 18 fence right here, runs along Mole Road and then
- 17:48:41 19 back on 7th Street. It's six and a half acres in
- 17:48:43 20 size. And what you'll notice is the blue squares
- 17:48:43 21 are the number of buildings that were present on
- 17:48:48 22 the site before we started the removal action.
- 17:48:50 23 The building located in this area was
- 17:48:52 24 actually a Navy consolidated dive unit, which we
- 17:48:55 25 had to relocate to a different area of Naval

- 17:48:55 1 Station prior to the removal action. We built a
- 17:49:02 2 large temporary support complex for the Navy dive
- 17:49:06 3 unit.
- 17:49:06 4 Right here you'll see in a later photo
- 17:49:08 5 is the Navy Public Works paint shop. Our original
- 17:49:15 6 plan was to do this removal action throughout this
- 17:49:16 7 area and let the paint shop continue operating
- 17:49:17 8 while we're doing the dig.
- 17:49:20 9 This is a photo today of Sub-Site 2A.
- 17:49:24 10 It's actually a photo taken just about four weeks
- 17:49:27 11 ago. Here the red line is the boundary of
- 17:49:30 12 Sub-Site 2A. Today there's a parking lot. These
- 17:49:30 13 are the greenbelts we were talking about. The CBs
- 17:49:36 14 all actually building a volleyball court and some
- 17:49:37 15 other recreational facilities along this area.
- 17:49:42 16 The paint shop is now gone. I'll talk
- 17:49:44 17 some more about that, and all the buildings that
- 17:49:46 18 originally supported the dive unit are also gone.
- 17:49:49 19 The remediation was performed in
- 17:49:54 20 actually seven distinct phases, and we had to do
- 17:49:57 21 those phases for a couple of reasons. One, we had
- 17:49:57 22 to support the ongoing fleet operation that takes
- 17:50:01 23 place in the Mole pier area. Specifically,
- 17:50:03 24 originally our plan was to maintain the paint shop
- 17:50:06 25 operations, and also there was a continuing

- 17:50:09 1 increase in scope for the contaminated soil that
- 17:50:11 2 had to be removed as part of this removal action.
- 17:50:14 3 The original plan that we actually put
- 17:50:16 4 out for Sub-Site 2A only identified two work
- 17:50:18 5 phases, Phases 1 and 2. Phases 3, 4, 5, 6, and 7
- 17:50:22 6 were added for a variety of reasons. The basic
- 17:50:26 7 reason is right before we actually did the removal
- 17:50:28 8 action, we took a number of reconstruction samples
- 17:50:30 9 around the boundary of the site and found out that
- 17:50:30 10 the lateral extent of the contamination of the
- 17:50:31 11 soil was a lot more extensive than originally
- 17:50:36 12 thought, and I'll talk some more about Phases 6
- 17:50:40 13 and 7.
- 17:50:42 14 But Phase 6, some additional
- 17:50:43 15 investigation was done well outside the original
- 17:50:46 16 boundary of the removal action and found
- 17:50:48 17 additional contamination, and Phase 7 was actually
- 17:50:50 18 an area where a former hazardous waste yard was
- 17:50:55 19 located.
- 17:50:56 20 And here's a map. If you can slide
- 17:50:58 21 over to the first slide I had, this shows the
- 17:50:58 22 different phases. This is Phase 2A and 2B, 1A and
- 17:51:04 23 1B. And I should point out the reason there's an
- 17:51:07 24 A and a B was because the paint shop was located
- 17:51:09 25 approximately right here. They had the paint shop

- 17:51:13 1 basically as a drive-through facility, and so we
- 17:51:15 2 were going to do our excavation on one side of
- 17:51:17 3 that paint shop. Once that was complete and
- 17:51:17 4 backfilled and restored, then we would go ahead
- 17:51:20 5 and work on the other side, split the paint shop
- 17:51:20 6 and keep working.
- 17:51:27 7 I don't have the original boundaries
- 17:51:29 8 of Phase 2 and Phase 1, but these boundaries are
- 17:51:29 9 actually quite a bit wider than they originally
- 17:51:33 10 were intended based on preconstruction sampling
- 17:51:36 11 that was performed. Phase 3 was also added
- 17:51:38 12 because of the results of preconstruction sampling
- 17:51:39 13 along with Phase 4.
- 17:51:45 14 Phase 5 we did some additional
- 17:51:41 15 sampling next to an existing Public Works Center
- 17:51:45 16 building, Building 199, and found additional
- 17:51:49 17 contamination in this specific area, so the soil
- 17:51:52 18 was excavated and disposed of.
- 17:51:54 19 Phase 6, as I earlier mentioned, was a
- 17:51:57 20 site investigation for this area that was
- 17:51:58 21 predominantly downwind from the burn pit, and we
- 17:52:01 22 had to do some hot spot excavation to remove the
- 17:52:03 23 contaminants effective there.
- 17:52:06 24 And Phase 7, which is the former
- 17:52:07 25 hazardous waste yard, is the area that we are

- 17:52:10 1 presently just completely our excavation and
- 17:52:11 2 restoration efforts.
- 17:52:14 3 And I should point out that Phase 2
- 17:52:19 4 was actually where the real burn pit was located.
- 17:52:21 5 And I can't remember if I said this or not, but
- 17:52:23 6 I'll repeat it. Phase 1 was originally planned to
- 17:52:23 7 go only to five feet in depth, but based on
- 17:52:23 8 samples we took when we reached the five-foot
- 17:52:27 9 level, we took samples down to ten feet and found
- 17:52:30 10 out that contamination also existed at that depth,
- 17:52:32 11 and so this phase was also dug to ten feet or
- 17:52:32 12 groundwater, whichever was deeper.
- 17:52:42 13 Here's a photo from our Phase 1. Here
- 17:52:43 14 is the paint shop. We're just working on the
- 17:52:47 15 western boundary now. The original plan was that
- 17:52:50 16 we were going to leave the paint shop in place,
- 17:52:52 17 and we were actually going to put in 40 or 60 mil
- 17:52:53 18 plastic sheeting around all the soil to
- 17:52:57 19 encapsulate that contaminated soil so we didn't
- 17:52:59 20 have to worry about recontaminating the clean
- 17:53:02 21 backfill. The decision was later made by the Navy
- 17:53:02 22 that that's not what they wanted to do. This
- 17:53:05 23 building was actually demolished, and all the soil
- 17:53:05 24 underneath the building was excavated.
- 17:53:11 25 Here's another aerial photo showing

- 17:53:14 1 the Phase 1 activity. As you can see now, the
- 17:53:16 2 paint shop that was located here is already gone.
- 17:53:20 3 We then abandoned our phase approach where we had
- 17:53:21 4 the A's and B's, and we basically started working
- 17:53:21 5 throughout the site. We're currently taking both
- 17:53:26 6 Phase 2 and Phase 1 here. On this side of this
- 17:53:32 7 line you'll see that we're actually backfilling
- 17:53:33 8 the area from our previous excavation.
- 17:53:37 9 The black areas -- the dark areas are
- 17:53:37 10 actually where we're stockpiling our contaminated
- 17:53:38 11 soil for profiling and eventual off-site transport
- 17:53:42 12 for disposal.
- 17:53:45 13 This is a photo of Phase 2 just
- 17:53:50 14 showing part of the dig. This area right here is
- 17:53:55 15 a high voltage duct bank, and we encountered a
- 17:53:57 16 number of these when we were digging up the site.
- 17:53:57 17 And we had to support these duct banks basically
- 17:54:00 18 by putting a light soil fill underneath the duct
- 17:54:05 19 bank so that we could actually dig below those and
- 17:54:05 20 then restore the site.
- 17:54:12 21 MR. WOEMPNER: I have a question. On your
- 17:54:09 22 backfill, what are you backfilling it with?
- 17:54:14 23 MR. STARR: Actually, the backfill was --
- 17:54:14 24 there was two kinds of backfill. The first three
- 17:54:18 25 feet of backfill was actually a crush rock, about

- 17:54:21 1 a four-inch crush. The thought was there that we
- 17:54:24 2 wanted to put about three feet of rock between the
- 17:54:26 3 groundwater table and the clean backfill so that
- 17:54:29 4 we didn't have to worry about anything in the
- 17:54:29 5 groundwater affecting the clean backfill we put
- 17:54:33 6 in. And the backfill was what we call FS15 which
- 17:54:34 7 is essentially a sandy low.
- 17:54:38 8 MR. WOEMPNER: Do you import that -- bring
- 17:54:38 9 it in?
- 17:54:41 10 MR. STARR: We bring it in from outside.
- 17:54:41 11 And we would also sample all the backfill before
- 17:54:44 12 we brought it on site to make sure that we weren't
- 17:54:44 13 bringing something dirty back on the site we just
- 17:54:46 14 cleaned up.
- 17:54:50 15 MR. WOEMPNER: Thank you.
- 17:54:52 16 MR. STARR: Here's another aerial photo. I
- 17:54:54 17 do want to point out one thing here is if you look
- 17:54:58 18 in this particular area, that green is actually
- 17:55:01 19 water, and you'll see some black along the edges
- 17:55:04 20 leaking in.
- 17:55:05 21 When we were digging up the actual
- 17:55:05 22 burn pit area in Phrase 2, we encountered
- 17:55:08 23 extensive diesel contamination right at the
- 17:55:10 24 groundwater level. We did additional testing and
- 17:55:12 25 found out that diesel can impact the soil. It was

- 17:55:13 1 actually extended down to 15 feet below ground
- 17:55:13 2 surface or five feet below the water table. So we
- 17:55:20 3 had to go back and dig out all this decontaminated
- 17:55:21 4 soil also down to 15 feet essentially in an area
- 17:55:26 5 about like this size, pretty much where the
- 17:55:31 6 footprint of the burn pit was.
- 17:55:37 7 Here you see we're still doing our
- 17:55:39 8 clean backfill here. This is the rock I was
- 17:55:41 9 talking about. You can see we put the rock in,
- 17:55:44 10 and they're still digging up parts of the phase
- 17:55:47 11 right here. And, again, there are the stockpiles
- 17:55:47 12 that we have on site for disposal.
- 17:55:52 13 This is just a quick shot of Phase 3.
- 17:55:53 14 It's pretty much a small sliver, so we could go
- 17:55:56 15 ahead and dig this out. And I forgot to talk
- 17:55:59 16 about the totals. We took about 10,000 tons of
- 17:56:01 17 soil out of Phase 3.
- 17:56:04 18 MR. WOEMPNER: Is that just contaminated
- 17:56:05 19 water?
- 17:56:07 20 MR. STARR: It's the green water you saw
- 17:56:07 21 from the photo. It's not contaminated, but since
- 17:56:07 22 we were digging this in the summertime, it was
- 17:56:10 23 stagnant. So we basically got an algae growth in
- 17:56:10 24 it, and that's why it's green.
- 17:56:17 25 MR. WOEMPNER: Okay.

17:56:18 1	MR. STARR: Here is another duct bank that
17:56:19 2	we exposed when we were doing the dig. This is
17:56:24 3	another high voltage power line that goes across
17:56:27 4	the site, and that was for Phase 4.
17:56:31 5	One interesting thing we did right
17:56:34 6	before we started the removal action based on
17:56:36 7	input from the regulatory agencies, we also had to
17:56:39 8	add a radiological survey to our dig to determine
17:56:43 9	if there was any low voltage radioactive point
17:56:44 10	sources on the site.
17:56:47 11	And to briefly go over what that
17:56:48 12	survey entailed, we basically had what we called a
17:56:49 13	RAD meter, and we would have to do three surveys
17:56:55 14	on the soil to find out if we had these small
17:56:55 15	point sources. The first we would actually
17:56:58 16	perform while the soil was in the ground or
17:57:00 17	in-situ. And then we would dig out the soil, and
17:57:00 18	we had to dig it out in two-foot lifts because the
17:57:06 19	meter could only detect a point source at two feet
17:57:09 20	in depth. Once we took it out, we took it to the
17:57:11 21	stockpile area, spread it out flat 18 inches
17:57:13 22	thick, and then we'd survey it a second time. And
17:57:16 23	then right before we would dispose of that soil,
17:57:16 24	we'd lay it back out again a third time in 18-inch

17:57:20 25 lifts and survey it a third time.

17:57:23 1	Through that three survey process
17:57:25 2	I'd like to point out that everything was found in
17:57:25 3	the first two surveys. We found 31 low voltage
17:57:29 4	radioactive point sources.
17:57:31 5	The photo here of one of the point
17:57:33 6	sources happens to be the biggest one we ever
17:57:34 7	found. Most were about the size of a dime, and
17:57:39 8	probably 10 or 12 of those were the size of a pea.
17:57:43 9	So this is like finding 31 needles in a very large
17:57:46 10	haystack.
17:57:47 11	The point sources were isolated. We
17:57:49 12	sent them to a radiological lab to be evaluated
17:57:52 13	and find out what they were, and then they were
17:57:52 14	essentially either destroyed by the lab as part of
17:57:55 15	their analysis process or shipped off to the
17:58:00 16	appropriate disposal facility for disposition.
17:58:02 17	I also need to point out when we were
17:58:04 18	going through our survey, we found some soil that
17:58:07 19	exhibited properties that may have been low-level
17:58:11 20	radioactive waste. And just to explain, the Navy
17:58:13 21	has the Navy or DoD guidelines is whenever
17:58:17 22	you're detecting something that's considered one
17:58:20 23	and a half times background that is, the counts
17:58:22 24	coming off the soil was one and a half times the
17:58:24 25	background you've already established, that's the

- 17:58:26 1 action level for the Navy. The regulatory action
- 17:58:27 2 level is two times the background. The particular
- 17:58:31 3 soil we found was between one and a half and two,
- 17:58:33 4 so technically from a regulatory standpoint, it
- 17:58:35 5 was not low voltage radioactive waste, but the
- 17:58:35 6 Navy chose to deal with it that way and dispose of
- 17:58:40 7 it in Texas.
- 17:58:42 8 This is just a photo of Phase 5. This
- 17:58:48 9 was the former building 199 just before it was
- 17:58:51 10 demolished and we excavated below it.
- 17:58:54 11 Here's another picture from the aerial
- 17:58:57 12 view. It's kind of showing Phases 3, 4, and 5.
- 17:58:59 13 We've already now moved out and taken care of
- 17:59:02 14 Phase 3 and Phase 4. This is Phase 5. We haven't
- 17:59:06 15 quite gotten to the digging yet. As you can see,
- 17:59:07 16 we've now backfilled the area. I showed you
- 17:59:11 17 earlier it had the gravel. That's done.
- 17:59:13 18 We're still working on the excavation
- 17:59:15 19 on this side, and you can still see where our
- 17:59:17 20 stockpile area is.
- 17:59:19 21 And this is a question that came up
- 17:59:20 22 quite a while ago. This is actually clean fill,
- 17:59:23 23 and so one of the questions we kept getting asked
- 17:59:25 24 was how do you know that the dirty stuff you're
- 17:59:31 25 stockpiling as clean fill isn't contaminating the

```
17
17:59:31 1 site. And the way we constructed the stockpile
17:59:31 2 areas is we basically had 20 mil high-density
17:59:35 3 polyethylene sheeting we put on the ground. On
17:59:38 4 top of that we put 12 inches of the FS-15 backfill
17:59:41 5 that we were using, and then put another 20 mil
17:59:43 6 ATCE new liner on top of that and sandbagged the
17:59:46 7 berm.
17:59:49 8
                        When we're using the heavy equipment,
17:59:49 9 the potential always exists that you put a hole
17:59:49 10 through the top layer of the ATCE, but the 12-inch
17:59:49 11 cushion layer always protects the liner that's on
17:59:52 12 the bottom. In fact, every time we pull those up,
18:00:00 13 all the bottom liners are always intact. And
```

18:00:07 16 we're moving back from the contaminated areas to 18:00:09 17 the clean areas so we won't recontaminate the 18:00:11 18 site.

18:00:02 14 you'll also see this particular hall ramp right

18:00:04 15 here. We also built the same ramp in here, so

This is a photo of Phase 6. This was 18:00:11 19 18:00:16 20 based on additional sampling we had done. We took 18:00:19 21 about 10,000 tons out of this area, a number of 18:00:19 22 hot spots removed. What's interesting is this 18:00:19 23 existing building was basically a weld shop, and 18:00:27 24 the original plan was to actually deconstruct this 18:00:29 25 prefabricated building, dig out the contaminated

- 18:00:29 1 soil beneath the building, and then reconstruct it
- 18:00:29 2 back on site. We actually came up with a method
- 18:00:29 3 where we could actually get four deep caissons to
- 18:00:37 4 support the structure while we could dig around
- 18:00:42 5 it, so we never had to take the building down, and
- 18:00:42 6 it shortened the downtime for the weld shop and
- 18:00:42 7 also reduced the cost of the actual removal
- 18:00:42 8 action.
- 18:00:52 9 And here's a photo of Phase 6 from the
- 18:00:56 10 air. You can see one hot spot we're taking out
- 18:00:59 11 here. We have another hot spot, large area we're
- 18:01:03 12 taking out in this location. You can see that the
- 18:01:04 13 main Sub-site 2 area has already been restored,
- 18:01:05 14 and this is another hot spot -- that's on there
- 18:01:11 15 and this is a small one right here.
- 18:01:14 16 And Phase 7 has to do with what they
- 18:01:18 17 refer to as a collection, storage, transfer
- 18:01:19 18 facility in the old haz waste yard. We're just
- 18:01:24 19 wrapping that work up now. We took out about
- 18:01:25 20 another 12,000 tons of contaminated soil, and
- 18:01:29 21 basically dug a couple of footprints of the old
- 18:01:30 22 haz waste yard. And this is a photo of the work
- 18:01:34 23 we're doing in that location.
- 18:01:37 24 MR. WOEMPNER: That last one, is that the
- 18:01:37 25 Brinzer Street parking lot?

18:01:39	1	MR.	STARR:	Pardon	me?

- 18:01:39 2 MR. WOEMPNER: Is that the Brinzer Street
- 18:01:39 3 parking lot?
- 18:01:40 4 MR. STARR: I'm not sure. This is actually
- 18:01:46 5 7th Street right here in this photo.
- 18:01:51 6 MR. WOEMPNER: Where you took off and
- 18:01:52 7 excavated?
- 18:02:00 8 MS. MORLEY: Brinzer Street is over here
- 18:02:00 9 and this is where the work was.
- 18:02:03 10 MR. WOEMPNER: Okay. It's not the same.
- 18:02:05 11 MS. COLLINS: Since most of the IR sites at
- 18:02:05 12 Naval Station are parking lots, it's confusing.
- 18:02:12 13 MR. STARR: And here's the most recent
- 18:02:16 14 aerial photo we have. It's actually not the most
- 18:02:20 15 recent. Again, you can see the area where we have
- 18:02:24 16 had the site restored. This area right here is
- 18:02:29 17 actually our stockpile area for the soil we've
- 18:02:29 18 been digging out of the CST, and that's the
- 18:02:32 19 stockpile profile, and we hauled that off to an
- 18:02:35 20 off-site disposal just like we did with the rest
- 18:02:35 21 of Sub-Site 2A.
- 18:02:40 22 As we performed all of our excavation
- 18:02:43 23 operations, we would collect confirmation soil
- 18:02:45 24 samples to evaluate the effectiveness of the
- 18:02:46 25 removal action. The samples were collected from

18:02:46	1	two area	as: one	on t	the	sidewall	L. Ever	су '/	/5 Li	nea	ı⊥
18:02:55	2	feet we	would	take	a	sidewall	sample	to	see	if	we

- 18:02:57 3 could confirm that we had the lateral extent of
- 18:02:57 4 the contamination taken care of. And then we also
- 18:02:57 5 took samples from the floor of the excavation
- 18:03:03 6 whether we were at groundwater or below
- 18:03:08 7 groundwater on a 75-by-75-foot grid, so at least
- 18:03:12 8 we could document anything that may have been left
- 18:03:15 9 behind.
- 18:03:15 10 But essentially once we dug to
- 18:03:15 11 groundwater, we didn't dig any deeper except for
- 18:03:20 12 the diesel contaminated soil.
- 18:03:22 13 These are results of the confirmation
- 18:03:22 14 samples for Phases 1 through 5. We had actually
- 18:03:30 15 36 confirmation samples with concentrations
- 18:03:32 16 greater than or equal to the target cleanup
- 18:03:32 17 levels. These were 11 sidewalls and 24 floors.
- 18:03:41 18 Primarily the contaminants that we had
- 18:03:42 19 problems with in the confirmation samples was
- 18:03:45 20 almost predominantly hexavalent chrome.
- 18:03:48 21 Hexavalent chrome in the cleanup goal was .2 parts
- 18:03:50 22 per million. In a lot of our hits we got
- 18:03:53 23 initially hexavalent chrome were at a .21 to like
- 18:03:58 24 .6 parts per million range, and we also detected a
- 18:04:03 25 few PAHs. I believe those were all from the

21

- 18:04:05 1 floors.
- 18:04:07 2 Phase 6 we had six confirmation
- 18:04:08 3 samples: four sidewalls, two floor samples that
- 18:04:11 4 exceeded our cleanup goals. Again, those were
- 18:04:11 5 primarily hex chrome with a few PAHs.
- 18:04:19 6 Based on the work that's complete, we
- 18:04:25 7 believe that the removal action reduced health and
- 18:04:27 8 contaminant concentrations to acceptable levels
- 18:04:29 9 with respect to the human health. We have
- 18:04:33 10 accomplished this through education and off-site
- 18:04:34 11 disposal, and the contaminated soil and
- 18:04:37 12 appropriate EPA certified in both facilities, and
- 18:04:41 13 the removal action has also substantially
- 18:04:41 14 eliminated any identified pathways for exposure.
- 18:04:47 15 Right now a closure report has been
- 18:04:51 16 drafted. It's undergoing Navy review. And at
- 18:04:54 17 this point I guess I'm passing the baton to
- 18:04:55 18 Bechtel, since my work is about complete after
- 18:04:59 19 three years at Mole pier, and we're going to be
- 18:05:01 20 talking about the RI.
- 18:05:03 21 Any questions? Thank you.
- 18:05:15 22 MS. MORLEY: Does anyone have questions for
- 18:05:17 23 Glenn? Okay.
- 18:05:31 24 MR. BISHOP: Pete Stang, Bechtel
- 18:05:31 25 Environmental, Inc., "Site 2, The Next Step."

18:05:35 1	MR. STANG: Glenn, you could have at least
18:05:35 2	passed off the ceremonial pointer here. I'm
18:05:58 3	disappointed.
18:05:58 4	As Foster/Wheeler and the Navy
18:05:58 5	complete the removal action at Sub-Site 2A, the
18:06:05 6	next step is to investigate the entire Site 2.
18:06:10 7	As Glenn focused on six and a half
18:06:14 8	acres, Sub-Site 2A, the next step is to evaluate
18:06:15 9	the entire Mole pier, about 23 acres.
18:06:19 10	A little bit of history about the
18:06:23 11	site. Mole pier was actually part of San Diego
18:06:28 12	Bay up until approximately 1941. This is Paleta
18:06:34 13	Creek, and we can actually see the dredge material
18:06:42 14	construction of the portion of Naval Station on
18:06:46 15	the west side south of Paleta Creek. This is
18:06:49 16	essentially 7th Street, and this represents the
18:06:55 17	triangular portion of Mole pier site.
18:07:00 18	I guess we can see a little bit you
18:07:01 19	can actually see the dredge line out here where
18:07:05 20	the dredge material was being brought up from the
18:07:07 21	dredge barge here in San Diego Bay and
18:07:09 22	hydraulically pumped onto Mole pier
18:07:13 23	As Glenn also mentioned, between 1945
18:07:20 24	and the 1970s there were significant disposal
18:07:24 25	activities that occurred at numerous locations on

18:07:28	1	Mole pier	Sub-Site	2A,	the	main	disposal	pit,
----------	---	-----------	----------	-----	-----	------	----------	------

- 18:07:31 2 where there was petroleum deposited into
- 18:07:38 3 construction and other types of debris and burned
- 18:07:41 4 periodically in Sub-Site 2A.
- 18:07:45 5 This portion of the site is 2G, the
- 18:07:46 6 wharf builders yard, which was apparently a heavy
- 18:07:54 7 petroleum creosote type facility where piers, pile
- 18:08:01 8 timber was treated with creosote for the purpose
- 18:08:05 9 of pier and quay wall construction. There's also
- 18:08:12 10 in this photo a fairly open area here to the east
- 18:08:17 11 side of the site, which we refer to as 2D, 2E in
- 18:08:23 12 this area, 2B down here where there was a
- 18:08:30 13 significant amount of time from the '50s to the
- 18:08:31 14 '80s of brow and platform painting, sanding,
- 18:08:38 15 blasting, general industrial activity of that
- 18:08:40 16 nature.
- 18:08:41 17 In a circa 1960 photo, again, a pretty
- 18:08:50 18 good view of the Mole pier disposal area 2A.
- 18:08:55 19 What's been referred to in the past as a disposal
- 18:08:56 20 trench running through the eastern third of Mole
- 18:09:05 21 pier and some discolored soils here that represent
- 18:09:10 22 again the brow and platform painting and scraping
- 18:09:16 23 area.
- 18:09:16 24 The one thing I would like to point
- 18:09:18 25 out, during all the iterations, 7th Street even in

18:09:26 1	the early 1940s was always present. Apparently,
18:09:29 2	based on the construction of the quay wall and
18:09:33 3	historic utilities, was not directly part of the
18:09:39 4	waste deposition area was an inherent structure
18:09:41 5	throughout the history of Mole pier.
18:09:45 6	This is, I believe, about a year old
18:09:49 7	photo of Mole pier, oblique angle. It shows the
18:09:52 8	current condition of Mole pier with Sub-Site 2A
18:09:55 9	that Glenn already explained in great detail for
18:10:01 10	us; the CST, the area where the Navy manages
18:10:07 11	sediment dewatering and characterization
18:10:12 12	activities to support the ongoing maintenance
18:10:15 13	dredging activities and construction dredging
18:10:17 14	activities within San Diego Bay; the Navy
18:10:23 15	recycling facility; the Navy hazmart where small
18:10:31 16	quantities of paints, lacquers, things of that
18:10:35 17	nature are basically maintained for distribution
18:10:38 18	to even smaller activities. It's to keep the
18:10:43 19	paint lockers and what have you with just the bare
18:10:45 20	minimum of what's necessary in the individual
18:10:49 21	activities.
18:10:50 22	And a diagram showing how the
18:10:57 23	different subsites are identified throughout.

18:11:00 24 These circular structures here were essentially

18:11:04 25 the old ball fields, the outfield census for the

18:11:08 1	Navy ball fields out there. Some of these
18:11:11 2	designations: 2A is generally equivalent to some
18:11:18 3	of the industrial practices that have gone on. In
18:11:22 4	the case of 2C there really wasn't a defined
18:11:26 5	industrial activity. The site boundary is simply
18:11:29 6	a fence line. These boundaries help the Navy to
18:11:33 7	administratively define some of these areas for
18:11:36 8	keeping track of past and present land use.
18:11:40 9	This is pretty much a description of
18:11:46 10	what we've talked about here. There are some
18:11:49 11	former RC/RA related facilities. The CST
18:11:54 12	collection, storage, and transport facility was
18:11:58 13	essentially the hazardous waste collection
18:12:02 14	facility. And prior to the RC/RA part B permit
18:12:09 15	that was put in place in 1993 for Naval Station,
18:12:12 16	SWMU 5 and SWMU 6 were both completely contained
18:12:18 17	within 2A. SWMU 5 has been completely excavated
18:12:22 18	to approximately 12 to 14 feet in that area of the
18:12:28 19	removal action, and over 50 percent of SWMU 6, the
18:12:33 20	old paint shop, sandblast grid piles has been
18:12:38 21	completely excavated or over 50 percent has been
18:12:42 22	excavated during the 2A removal action.
18:12:46 23	In 1996 the creosote pit that I showed

18:12:51 24 at 2G was primarily excavated with confirmation

18:12:56 25 samples collected and a report completed

18:13:02 1	describing the activities. The Sub-Site 2A
18:13:09 2	removal action that Glenn has spoken to us about
18:13:11 3	is also part of the current condition and status.
18:13:14 4	Current conditions and status of Mole
18:13:21 5	pier is primarily fleet support and industrial.
18:13:23 6	Parking, dredge material handling within Sub-Site
18:13:27 7	2G, the hazmart facility, Navy recycling facility
18:13:35 8	where not only the typical things you might think
18:13:36 9	of recycling aluminum, cardboard, newspaper
18:13:40 10	but also construction debris where the Navy has a
18:13:45 11	good program where asphalt/concrete can be brought
18:13:49 12	there, crushed into aggregate, and reused either
18:13:54 13	within the facility or actually sold for other
18:13:57 14	beneficial use purposes.
18:14:00 15	Offices and temporary paint shop
18:14:02 16	facility that was moved when the original paint
18:14:07 17	shop was dismantled and removed approximately two
18:14:11 18	years ago.
18:14:13 19	Overall, again, the site looking at
18:14:22 20	what Glenn has talked about with a tremendous
18:14:26 21	amount of the sampling activity, the significant
18:14:29 22	amount of effort for the Navy and by the Navy to
18:14:36 23	perform the removal action here to bring it to
18:14:40 24	constructive reuse as a parking facility, install

18:14:44 25 the greenbelt buffer to minimize storm water

- 18:14:48 1 runoff from the parking area to San Diego Bay,
- 18:14:51 2 allow for infiltration to minimize non-point
- 18:14:56 3 source discharge to San Diego Bay.
- 18:15:00 4 And now it's time to characterize the
- 18:15:03 5 rest of the site from a soil and groundwater
- 18:15:05 6 standpoint.
- 18:15:07 7 There have been a lot of
- 18:15:10 8 investigations, and certainly some of these helped
- 18:15:15 9 us identify that Sub-Site 2A with the information
- 18:15:20 10 we had was the most significant area of
- 18:15:24 11 contamination that we knew of, and a tremendous
- 18:15:27 12 amount of effort has been put into that portion.
- 18:15:32 13 We have the closure report for the CST
- 18:15:33 14 facility within 2A, the limited soil removal at
- 18:15:36 15 the CST within Sub-Site 2A, the RFI Phase 1 under
- 18:15:43 16 RC/RA for SWMU 6, RFI Phase 2 sampling at SWMU 6,
- 18:15:48 17 the removal site evaluation for Sub-Site 2A. And
- 18:15:52 18 the removal action of 2A is all focused, so
- 18:15:55 19 two-thirds, roughly, of the investigations from
- 18:15:58 20 Mole pier have focused on the western end of 2A.
- 18:16:02 21 There have been some spotty sampling
- 18:16:05 22 activities for soil and groundwater at the rest of
- 18:16:08 23 the site, but those 15 acres really do need -- the
- 18:16:12 24 Navy has decided do need a comprehensive remedial
- 18:16:16 25 investigation performed to determine the nature

```
18:16:19 1 and extent of contamination and what level of
```

- 18:16:24 2 threat does that contamination represent.
- 18:16:29 3 The next steps: We have a predraft
- 18:16:36 4 work plan which is currently completing Navy
- 18:16:39 5 review and revision process. We will incorporate
- 18:16:43 6 the Navy's final comments and develop a draft work
- 18:16:48 7 plan and get that draft work plan to the agencies,
- 18:16:50 8 to the RAB, and to the public here within the next
- 18:16:55 9 couple month period.
- 18:16:57 10 We'll have that out for a 60-day
- 18:16:59 11 comment period, take public comments, comments
- 18:17:03 12 from RAB members, and comments from our regulatory
- 18:17:08 13 partners, revise and finalize the work plan,
- 18:17:13 14 conduct the RI. The purpose of the remedial
- 18:17:15 15 investigation for the overall Site 2 will be to
- 18:17:19 16 complete the definition of nature and extent of
- 18:17:20 17 contamination in soil for the remainder of Site 2,
- 18:17:27 18 not including Sub-Site 2A for soil and to evaluate
- 18:17:31 19 the nature and extent of contamination in
- 18:17:32 20 groundwater for all of Site 2 including Sub-Site
- 18:17:36 21 2A. Take that data, conduct risk assessment for
- 18:17:44 22 both human health purposes and a screening level,
- 18:17:45 23 ecological risk assessment, and based on the data
- 18:17:51 24 and results of the risk assessments, prepare a
- 18:17:52 25 remedial investigation report.

18:17:58 1	For soil delineation we plan to
18:18:00 2	install borings across Site 2 to include all
18:18:08 3	subsites except 2A which has been, again,
18:18:11 4	primarily excavated with perimeter samples showing
18:18:17 5	that the primary goals of the removal action were
18:18:19 6	completed. Where they didn't in the main
18:18:22 7	excavation, they went out and targeted hot spots
18:18:24 8	in the remaining portion of Site 2, Sub-Site 2A to
18:18:29 9	complete the information, and having a fairly
18:18:35 10	dense amount of data within the remaining soil
18:18:43 11	from their characterization samples to give us a
18:18:45 12	good handle on what is left in place at 2A.
18:18:50 13	So for the remedial investigation, use
18:18:53 14	that data from 2A with the data that we plan to
18:18:57 15	collect at the rest of the sub-sites.
18:18:59 16	Collect samples at multiple depths,
18:19:02 17	zero to two feet, eight feet to ten feet, and
18:19:05 18	targeted deeper locations based on information we
18:19:09 19	have from the removal action at 2A and previous
18:19:14 20	investigations where detections were identified
18:19:18 21	greater than 10 feet, analyze those samples for
18:19:21 22	complete suite of analytes.
18:19:24 23	Again, our rationale is to define the
18:19:24 24	nature and extent with sufficient soil samples
18:19:31 25	across the entire site while allowing sufficient

18:19:31 1	flexibility to make sub-site by sub-site
18:19:36 2	individual decisions if necessary.
18:19:39 3	To delineate groundwater, we plan to
18:19:44 4	use the nine existing shallow wells on-site,
18:19:48 5	augment that with a number of additional shallow
18:19:52 6	monitoring wells to give us a good understanding
18:19:55 7	of nature and extent of shallow groundwater. Also
18:19:58 8	install deep wells to assess the potential for
18:20:04 9	groundwater contaminants to have basically gone to
18:20:08 10	depths greater than 30 to 35 feet to examine the
18:20:12 11	groundwater deeper but to see if there have been
18:20:16 12	any DNAPLs or any chlorinated solvents or other
18:20:19 13	groundwater contaminants that have a tendency to
18:20:22 14	sink in the water column; perform multiple rounds
18:20:24 15	of groundwater sampling; conduct a 25-hour "Tidal
18:20:28 16	Influence Study" to give us some understanding of
18:20:35 17	the dynamic between San Diego Bay and groundwater
18:20:39 18	at the site.
18:20:41 19	Those objectives, again, are to
18:20:42 20	delineate horizontal and vertical extent of
18:20:43 21	contamination in groundwater; assess potential
18:20:46 22	communication in the dynamics of hydraulics with
18:20:54 23	bay water during tidal change; assess groundwater
18:20:59 24	conditions along the quay wall along 7th Street,
18:21:03 25	which is the primary potential point of contact

- 18:21:09 1 between any contaminated groundwater at the site
- 18:21:12 2 and ecological receptors; and evaluate groundwater
- 18:21:15 3 condition stability.
- 18:21:19 4 Our site and our proposed network of
- 18:21:24 5 monitoring wells are still completing numbers and
- 18:21:28 6 locations with the Navy, but essentially
- 18:21:31 7 establishing multiple series of wells along 7th
- 18:21:41 8 Street, a series of wells along the perimeter of
- 18:21:46 9 the site, and a series of wells within the site
- 18:21:52 10 within each one of the sub-sites to give us a
- 18:21:56 11 "broad" understanding of the site as well as an
- 18:22:01 12 understanding of specific potential groundwater
- 18:22:06 13 conditions within each of the sub-sites.
- 18:22:11 14 I'd be happy to entertain any
- 18:22:13 15 questions at this time.
- 18:22:18 16 MR. BISHOP: What tides are you looking at?
- 18:22:22 17 The highest high tide?
- 18:22:24 18 MR. STANG: I think our intent would be to
- 18:22:26 19 look at the spring tides, to look at the high
- 18:22:29 20 highs and the low lows on either the full moon or
- 18:22:32 21 a new moon, and look at what the maximum tidal
- 18:22:36 22 influence would be on the wells that we would
- 18:22:43 23 install within 10s of feet of the quay wall
- 18:22:48 24 itself, and the intent would be to look at
- 18:22:50 25 multiple depths, not only shallow groundwater but

- 18:22:57 1 deeper groundwater as well where there may be
- 18:22:59 2 potential pathways either through the quay wall or
- 18:23:07 3 underneath the quay wall. That would give us a
- 18:23:09 4 handle, I think, on both vertical and horizontal
- 18:23:11 5 delineation. It will give us an understanding of
- 18:23:15 6 where the path of least resistance or the
- 18:23:19 7 preferred pathways, if any, may be located, and we
- 18:23:22 8 can use that data on the maximum tidal swing to
- 18:23:30 9 average over that 25-hour and give us for the
- 18:23:33 10 entire site a good understanding of the net mean
- 18:23:39 11 groundwater gradient which in theory and generally
- 18:23:45 12 in practice should be quite similar to if we went
- 18:23:48 13 out there on the neapest of neap tides when tidal
- 18:23:52 14 change was smallest.
- 18:24:01 15 MS. McINTYRE: I haven't been here for a
- 18:24:01 16 while, but I remember the Mole pier. And how big
- 18:24:03 17 is the entire site?
- 18:24:06 18 MR. STANG: Mole pier itself --
- 18:24:08 19 MS. McINTYRE: I'm not talking about Mole
- 18:24:08 20 pier. The whole --
- 18:24:10 21 MR. STANG: 23 acres. The triangular area,
- 18:24:10 22 the RI site is approximately 23 acres.
- 18:24:16 23 MS. McINTYRE: So the Site 2A is the only
- 18:24:19 24 site that's been really completely evaluated and
- 18:24:24 25 closed now?

18:24:25 1	MR. STANG: It hasn't been closed yet, but
18:24:27 2	it is certainly the portion of Site 2 that has had
18:24:31 3	the greatest sampling density for soil and
18:24:37 4	certainly the greatest effort to perform the
18:24:42 5	removal action to remove the contaminated soil, to
18:24:45 6	remove a couple feet of the upper portion of the
18:24:48 7	impacted groundwater.
18:24:50 8	As Glenn had mentioned earlier, the
18:24:53 9	excavation has gone down where they found the
18:24:57 10	diesel free product, some as deep as I believe
18:25:01 11	four to five feet into groundwater. So 2A has
18:25:10 12	been for all intents and purposes, I believe
18:25:13 13	about 80 percent of 2A down to about 11 or 12 feet
18:25:17 14	has been removed. It is gone. What's left
18:25:22 15	through characterization of sidewall samples, as
18:25:26 16	well as some grid sampling that was performed to
18:25:30 17	identify the hot spots that Glenn mentioned I
18:25:32 18	think in Phases 5, 6 and 7, give us a good handle
18:25:39 19	that those hot spot removal actions in the eastern
18:25:42 20	part of 2A accomplished the goal of getting rid of
18:25:46 21	those hot spots.
18:25:49 22	MS. MORLEY: Also at Sub-Site 2G there was
18:25:51 23	a removal action. You guys probably remember
18:25:53 24	Foster/Wheeler they were called Baxter then
18:25:56 25	they did the thermal treatment where they had

- 18:25:59 1 treated the soil on site, and that was where Pete
- 18:26:02 2 was showing you the old ball fields, so that was
- 18:26:05 3 also described by Glenn.
- 18:26:09 4 MS. McINTYRE: Was that site always
- 18:26:10 5 Sub-Site 2A through G?
- 18:26:18 6 MS. MORLEY: I think that's when they
- 18:26:18 7 established 2G was when Foster/Wheeler was going
- 18:26:18 8 in to do their work because it was just so large.
- 18:26:23 9 MS. McINTYRE: Right. Thank you.
- 18:26:27 10 MR. STANG: Thank you very much.
- 18:26:29 11 MR. BISHOP: Thanks, Pete.
- 18:26:31 12 MS. MORLEY: I guess I'm up next to give an
- 18:26:32 13 update on the proposed plan for Sites 5, 7, 11,
- 18:26:37 14 and 12.
- 18:26:39 15 As you remember last time when our
- 18:26:41 16 story unfolded, DTSC had written the Navy a letter
- 18:26:43 17 stating that they basically didn't agree with no
- 18:26:49 18 further action. They wanted us to do further
- 18:26:49 19 groundwater sampling.
- 18:26:53 20 Well, even though we stand by our
- 18:26:56 21 contention that the site doesn't need it, because
- 18:26:58 22 we're such nice people and get along so well with
- 18:27:02 23 DTSC, we're going to say okay. So we sent them a
- 18:27:03 24 letter -- two letters, actually, basically coming
- 18:27:06 25 up with our proposal for groundwater sampling at

- 18:27:10 1 the site, and now we're just waiting to hear back
- 18:27:13 2 what they think of our proposal. So the next time
- 18:27:15 3 we meet we should have more information; right,
- 18:27:18 4 Douglas?
- 18:27:19 5 MR. BAUTISTA: Yes. Thank you.
- 18:27:22 6 MS. MORLEY: You're welcome. Especially
- 18:27:23 7 that part about us being nice; right, Douglas?
- 18:27:28 8 And that's the update on the proposed
- 18:27:32 9 plan.
- 18:27:36 10 Tim is not Carol Yamane.
- 18:27:40 11 MR. HEIRONIMUS: I am not Carol Yamane.
- 18:27:40 12 MS. MORLEY: This is Tim Heironimus, and he
- 18:27:40 13 is going to talk about IR Site 3.
- 18:27:44 14 MR. HEIRONIMUS: Thanks, Theresa.
- 18:27:46 15 MS. MORLEY: You're welcome, Tim.
- 18:27:47 16 MR. HEIRONIMUS: Those who may not know me,
- 18:27:50 17 I am Tim Heironimus. I'm the project manager with
- 18:27:52 18 Bechtel on Naval Station, and I'm filling in for
- 18:27:57 19 Carol who couldn't be here tonight.
- 18:27:59 20 Before I get started with the
- 18:28:02 21 discussion that I have here, I just wanted to
- 18:28:05 22 mention a couple of things. First of all, this is
- 18:28:08 23 the first of two presentations that you'll see on
- 18:28:10 24 Site 3 tonight. The second is going to be given
- 18:28:14 25 by Dave Murchison with DTSC, and they will be

	50
18:28:19 1	providing DTSC's perspective on Site 3.
18:28:24 2	This project has been stalled out
18:28:29 3	until recently. What we want to do now is get it
18:28:33 4	back on track, get things moving, so that's really
18:28:39 5	the purpose of trying to get together again and
18:28:44 6	decide on what the next steps ought to be on
18:28:46 7	Site 3.
18:28:48 8	The second thing I wanted to mention
18:28:50 9	before I get started is just basically a summary
18:28:55 10	of where we are right now in a nutshell.
18:28:59 11	In 2000 the Navy submitted a prefinal
18:29:03 12	remedial investigation report for Site 3, and that
18:29:10 13	report was submitted to the regulators and to the
18:29:13 14	RAB. We did receive comments back from DTSC who
18:29:19 15	primarily had the most significant comments on the
18:29:23 16	document, and the Navy prepared responses to those
18:29:26 17	comments and provided those back to DTSC. And we
18:29:33 18	have sort of a back and forth discussion on paper
18:29:37 19	here with DTSC, but DTSC then provided back their
18:29:43 20	responses to their comments, if you will, and we
18:29:50 21	have had those for a while.
18:29:52 22	The Navy has recently submitted back

18:29:55 23 responses for more discussion on that, so there's

18:30:00 24 a paper trail here of comments and responses that

18:30:04 25 we have gone through.

18:30:05 1	Where it stands right now is we're at
18:30:07 2	the point where we want to sit down again with
18:30:10 3	DTSC and negotiate what we need to do to complete
18:30:16 4	this RI report and move Site 3 along.
18:30:21 5	One more note. The Site 3 remedial
18:30:26 6	investigation report when it was prepared
18:30:29 7	essentially focused more on soil, if you will. We
18:30:34 8	included a baseline human health risk assessment
18:30:37 9	for soil in that document, and we conducted the
18:30:42 10	risk assessment using a residential scenario and
18:30:46 11	industrial scenario, so both of those are in
18:30:48 12	there.
18:30:49 13	The risk basically came up for
18:30:51 14	residential use would have come up in the higher
18:30:55 15	end of what we call the risk management range.
18:30:58 16	Some of you probably already heard of that before,
18:31:01 17	but it's EPA's designation for what would be
18:31:07 18	considered acceptable risk, which are risks
18:31:10 19	greater than one in a million of contracting
18:31:14 20	cancer.
18:31:15 21	At the other end of that range are
18:31:17 22	risks that would be considered unacceptable, which
18:31:18 23	are risks that are 1 in 10,000, and that's usually
18:31:24 24	denoted in scientific notation by 10 to the minus

18:31:29 25 4, which is one in 10,000, and 10 to the minus 6

18	:31	:31	1	or	1	in	а	million.

- 18:31:34 2 So the risks were toward the 10 to the
- 18:31:36 3 minus 4 range for residential; whereas, for an
- 18:31:41 4 industrial scenario, similar to why it's being
- 18:31:44 5 used right now, risks are at the other end of the
- 18:31:46 6 spectrum which are more 10 to the minus 5 or one
- 18:31:50 7 in a hundred thousand.
- 18:31:52 8 The report also acknowledged that
- 18:31:58 9 additional groundwater evaluation was needed at
- 18:32:01 10 the site, so that's certainly in that report and
- 18:32:05 11 set the stage for the next step.
- 18:32:08 12 So with that, I think I'll go ahead
- 18:32:15 13 and get started. Dave I think is going to hit
- 18:32:15 14 quite a bit of the site history and some of the
- 18:32:17 15 concerns that DTSC have, so I'll probably try and
- 18:32:23 16 make mine a little more brief 'cause I know that
- 18:32:26 17 some of that is going to be covered in our
- 18:32:30 18 discussion.
- 18:32:30 19 MR. MURCHISON: Don't worry, Tim. I'm
- 18:32:30 20 going to be brief, too.
- 18:32:32 21 MR. HEIRONIMUS: Sounds good.
- 18:32:35 22 You can see Site 3 is right in the
- 18:32:46 23 vicinity there at Paleta Creek. An enlargement of
- 18:32:53 24 Site 3, sort of a slightly rectangular site.
- 18:33:01 25 One thing I want to point out here is

18:33:03	1 a	fence	line	that's	existing	right	now.	That
----------	-----	-------	------	--------	----------	-------	------	------

- 18:33:07 2 defines the northern part of the site from the
- 18:33:10 3 southern portion of the site, and that's fairly
- 18:33:15 4 significant in the way we evaluate the risk and
- 18:33:20 5 have down various investigations. And as I
- 18:33:20 6 mentioned, there's been some soil removal actions
- 18:33:25 7 down there that focused primarily in the southern
- 18:33:29 8 part.
- 18:33:30 9 Site 3 operated from 1943 to 1975, and
- 18:33:35 10 it was the Navy's recycling center and area for
- 18:33:41 11 handling hazardous waste materials. There were
- 18:33:47 12 two incinerators located here that were used for
- 18:33:50 13 burning of all the wastes that weren't recycled or
- 18:33:55 14 otherwise reused. There was also another
- 18:33:59 15 incinerator located in about that area. That was
- 18:34:02 16 reportedly used for burning classified
- 18:34:05 17 documents -- papers and such.
- 18:34:07 18 Also, a couple of things to note here:
- 18:34:11 19 There were three USTs on this northern part of the
- 18:34:14 20 property, and the site itself was used for waste
- 18:34:21 21 storage, and they would keep materials stored at
- 18:34:24 22 the surface in drums and so on.
- 18:34:28 23 Here's the current use of Site 3.
- 18:34:33 24 This is up on the northern part, and for those of
- 18:34:36 25 you fairly familiar with it, this is the PWC

- 18:34:39 1 security parking lot, and the maintenance building
- 18:34:43 2 is off the screen and would be off in this
- 18:34:43 3 direction. This is, I believe, a natural gas
- 18:34:48 4 fueling station.
- 18:34:50 5 This is the southern two-thirds, so
- 18:34:52 6 it's this area here, and it is used as a parking
- 18:34:59 7 lot for the fleet while they're at duty.
- 18:35:05 8 What I mainly want to focus in on here
- 18:35:11 9 from the Navy's perspective, we have done a lot of
- 18:35:14 10 work at this site. We have made progress on it,
- 18:35:17 11 despite the fact that it's taken us quite some
- 18:35:22 12 time to get where we are right now. And I'll just
- 18:35:27 13 not focus on the site investigation so much, but
- 18:35:34 14 maybe address a few of the removal actions.
- 18:35:35 15 Just to mention these, 1986 was the
- 18:35:41 16 first time the site was even evaluated. This was
- 18:35:44 17 an initial assessment study, a paper study
- 18:35:47 18 essentially, that identified the need for further
- 18:35:51 19 work.
- 18:35:52 20 In 1986 there was a soil and
- 18:35:54 21 groundwater assessment done by Latten &
- 18:35:57 22 Associates, I believe. And in 1988 there was a
- 18:36:06 23 verification step investigation, which was the
- 18:36:11 24 next step that you take in a CERCLA process to
- 18:36:16 25 investigate sites to get a better gauge on whether

- 18:36:19 1 it's of concern or not.
- 18:36:24 2 A 1992 site assessment and a
- 18:36:28 3 geotechnical study for citing -- one time the Navy
- 18:36:33 4 wanted to cite a cold storage facility on the
- 18:36:36 5 property but they didn't follow through with that.
- 18:36:40 6 And I don't believe this is correct,
- 18:36:42 7 but in 1992 there was additional site
- 18:36:48 8 investigation work, site inspection work done by
- 18:36:51 9 IT Corporation. This 1994 soil assessment is
- 18:36:56 10 basically an underground storage tank removal
- 18:36:58 11 investigation; and a removal site evaluation
- 18:37:05 12 performed by OHM which later became IT, and that
- 18:37:11 13 was in preparation for a soil removal action down
- 18:37:16 14 here on this southern two-thirds.
- 18:37:17 15 There you can see the tally of the
- 18:37:17 16 number of samples that were collected for these
- 18:37:24 17 investigations. Just 430 samples were collected
- 18:37:27 18 during the time critical removal action which was
- 18:37:31 19 this area here.
- 18:37:34 20 Just to explain this a little bit,
- 18:37:35 21 this shows the boundaries of soil removed -- they
- 18:37:42 22 are located in three areas here: this is Area 1,
- 18:37:44 23 Area 2, and Area 3. And after that removal action
- 18:37:50 24 was completed, the site was backfilled and
- 18:37:54 25 restored to its parking lot surface. There was

18:37:58 1	additional soil samples collected, approximately
18:38:02 2	80 borings and soil samples put into this area
18:38:08 3	here, and we had 27 soil samples also collected up
18:38:16 4	in this northern area under a work plan that was
18:38:22 5	prepared and approved by the regulatory agencies.
18:38:25 6	Now, the work that we've accomplished
18:38:28 7	for the soil removal, starting off there was a
18:38:34 8	soil removal action done for about eight inches of
18:38:39 9	soil over 150 by 150 foot square area, but there's
18:38:44 10	really no documentation for where that occurred.
18:38:50 11	We know it occurred at Site 3, but that's about
18:38:51 12	all we know. It probably occurred up in the
18:38:55 13	incinerator area, but I don't know.
18:38:58 14	Again, the underground storage tanks
18:39:03 15	were removed. This particular tank was found to
18:39:07 16	have leaked and contaminated soil with diesel, so
18:39:10 17	there was 180 cubic yards of diesel contaminated
18:39:15 18	soil removed from that area.
18:39:18 19	And before I move on to the main time
18:39:23 20	critical removal action, there was what we call a
18:39:25 21	post time critical removal action. That was a
18:39:31 22	small area located right here where some
18:39:35 23	contaminated soil was moved out of a 10 foot by 10

18:39:37 24 foot area.

18:39:39 25 This is the time critical removal

- 18:39:45 1 action. Again, you see the boundaries. The grids
- 18:39:48 2 depict the depth of soil excavation with the
- 18:39:54 3 colors -- our color key here -- but I believe the
- 18:39:59 4 deepest soils removed were down to about 10 to 12
- 18:40:05 5 feet, and most areas more like six to eight feet.
- 18:40:09 6 The deeper areas -- well, it varies, but there was
- 18:40:12 7 a strip along here and several others.
- 18:40:18 8 This was a time critical removal
- 18:40:18 9 action. It was not intended to be a final
- 18:40:23 10 remedial action, so it was done as a fast track
- 18:40:29 11 process. And in doing that, the lead and PCBs or
- 18:40:34 12 polychlorinated biphenyls were determined to be
- 18:40:39 13 the primary chemicals of concern for the removal
- 18:40:42 14 action, and there were target cleanup levels set
- 18:40:47 15 for those contaminants. Basically those were set
- 18:40:50 16 at what's known as the PRGs or the preliminary
- 18:40:52 17 remediation goals that EPA identifies for
- 18:40:58 18 chemicals on a health based risk basis.
- 18:41:02 19 Just one last thing: both of those
- 18:41:07 20 contaminants are not very mobile. Something to
- 18:41:12 21 note there.
- 18:41:16 22 Now, for groundwater, again, I go back
- 18:41:23 23 to what I said earlier. There is a need to do
- 18:41:26 24 some additional groundwater evaluation, but we do
- 18:41:31 25 have some groundwater information from the site,

18:41:34	1	either from	former wel	ls or	existing	wells that
18:41:39	2	were put in	after the	time o	critical:	removal

18:41:42 3 action. You can see the color key where these

18:41:42 4 former wells were located. A number of those had

18:41:49 5 to be removed during the removal action, and OHM

18:41:52 6 subsequently reinstalled these new wells right

18:41:59 7 here.

18:41:59 8 In addition to that, there were

18:41:59 9 hydropunch samples collected at these blue dots.

18:42:02 10 These are basically grab groundwater samples that

18:42:05 11 are collected while drilling.

18:42:11 12 And the overall groundwater gradient

18:42:15 13 is actually towards the north, which is a little

18:42:19 14 curious right now, and I think we need to know

18:42:21 15 more about what that entails and why that is.

18:42:28 16 Just to touch upon a couple of points

18:42:32 17 back to the prefinal remedial investigation in

18:42:38 18 that report, we did develop that confirmation

18:42:41 19 sampling strategy after the time critical removal

18:42:42 20 action. That was done jointly with an approved

18:42:48 21 work plan. When we prepared the RI report again

18:42:53 22 and focused on the soil, primarily the results of

18:42:58 23 the post time critical removal action sampling,

18:43:00 24 and why that's significant is that during the time

18:43:03 25 critical removal action, the samples that were

18:43:05	1	collected	again	were	collected	for	lead	and	PCBs,
----------	---	-----------	-------	------	-----------	-----	------	-----	-------

- 18:43:10 2 so there was not data for an entire spectrum of
- 18:43:15 3 possible chemicals that were out at the site. So
- 18:43:17 4 there was a definite need to go back there to the
- 18:43:21 5 site and get additional data that filled in more
- 18:43:27 6 information on what the possible chemicals were of
- 18:43:30 7 concern remaining in the soil.
- 18:43:32 8 Again, we separated the site into two
- 18:43:36 9 areas, north and south. We carried that through
- 18:43:39 10 with the risk assessment, so the risk assessment
- 18:43:40 11 calculates risk for the north area and for the
- 18:43:44 12 south area.
- 18:43:47 13 Again, just to touch on that, we have
- 18:43:50 14 been going through a process here where we're
- 18:43:53 15 trying to work through what everyone's needs will
- 18:43:57 16 be on this project. Hopefully, what we want to do
- 18:44:01 17 here is team up with DTSC and sit down and develop
- 18:44:06 18 a joint strategy where we're all comfortable with
- 18:44:08 19 the data that we collect will be sufficient to
- 18:44:12 20 complete the RI, so that's really the goal of what
- 18:44:16 21 we want to do as the next step.
- 18:44:18 22 Now, we have this slide up here.
- 18:44:24 23 Obviously, the most important one I think is the
- 18:44:27 24 exact scope. The soil and groundwater will be
- 18:44:29 25 presented in the work plan. We probably have some

18:44:34	1	differences	of	opinion	on	these	two,	but	it'	S
----------	---	-------------	----	---------	----	-------	------	-----	-----	---

- 18:44:36 2 nothing we can't come to an agreement on.
- 18:44:40 3 And, hopefully, if we sit down and set
- 18:44:46 4 some timelines for ourselves, we do have this most
- 18:44:51 5 recent set of DTSC comments on the responses we
- 18:44:55 6 sent. However, I think what would be most
- 18:44:57 7 fruitful now is to actually have a face-to-face
- 18:45:04 8 meeting and iron these issues out.
- 18:45:04 9 And we're hoping we can do that in
- 18:45:08 10 February next month here and get geared up to
- 18:45:13 11 prepare what we're calling an extended remedial
- 18:45:15 12 investigation work plan. Again, the focus there
- 18:45:19 13 is let's fill in these additional data needs and
- 18:45:23 14 get the dataset that everyone feels comfortable
- 18:45:26 15 with.
- 18:45:27 16 We targeted that for July for the
- 18:45:31 17 draft to come out for the RAB and the agencies for
- 18:45:36 18 their review again. Hopefully, we'll be in the
- 18:45:40 19 field in the fall, and the extended remedial
- 18:45:44 20 investigation report would be in next year's time
- 18:45:49 21 frame there in the summer and fall.
- 18:45:52 22 That's all I have. If anyone has any
- 18:45:55 23 questions, I'll be happy to try and answer those.
- 18:46:01 24 MR. BISHOP: Thanks.
- 18:46:04 25 MS. MORLEY: Dave, you're up.

18:46:07 1	MR. MURCHISON: All righty.
18:46:20 2	Just to introduce myself, I'm Dave
18:46:24 3	Murchison. I've been with DTSC a couple of years
18:46:30 4	now. I have been a professional geologist quite
18:46:34 5	some time doing oil patchwork, research work with
18:46:39 6	the ocean drilling program, working at the United
18:46:42 7	States Department of Energy, working for
18:46:46 8	environmental consulting companies like
18:46:47 9	Groundwater Technology and Ridell Environmental
18:46:51 10	Services. I've been in my own practice for, oh,
18:46:57 11	nine years or something like that before coming to
18:47:00 12	DTSC.
18:47:02 13	What my job is is to do the geological
18:47:10 14	evaluation of work that is designed to protect
18:47:15 15	human health and the environment. No part of my
18:47:20 16	job description says that I'm to be a road block,
18:47:23 17	and we do strive to avoid that perception.
18:47:33 18	Now, going through this little
18:47:39 19	presentation, when you see red type, you're seeing
18:47:46 20	something that worried me as I reviewed the
18:47:50 21	documents that go into this site.
18:47:55 22	So, anyway, the first question that
18:48:01 23	DTSC geologists have to ask about a site is what
18:48:07 24	was it that happened here. What materials were

18:48:11 25 used, how were they used, what was the intention

18:48:13 1	of the work, what were the rules in place while
18:48:19 2	the work was being done, and how would those
18:48:23 3	contaminants behave in this place. All right?
18:48:29 4	Now, the information we have is this:
18:48:35 5	Site 3 received a wide variety of materials from
18:48:40 6	several Naval stations and the fleet. It included
18:48:51 7	solvents, batteries containing battery acid, a
18:48:54 8	wide variety of metals, a wide variety of
18:48:59 9	petroleum base compounds PCBs, so on.
18:49:05 10	What rules were in place? Essentially
18:49:08 11	none. The environmental rules that were in place
18:49:13 12	when this place started up in 1943 were
18:49:16 13	essentially this: you may not put anything in San
18:49:16 14	Diego Bay that impedes navigation. So the rules
18:49:25 15	were not as tough then as they are now.
18:49:32 16	So here's what we know. There's stuff
18:49:42 17	from the petroleum family including lubricants,
18:49:47 18	fuels, a fairly wild range of things. There's
18:49:52 19	transformers that came in. Well, those
18:49:53 20	transformers contained transformer oil which
18:49:53 21	probably contained PCBs. Other equipment came in
18:50:03 22	containing we don't know what it was. There
18:50:05 23	could have been antifreeze exotic stuff. It's
18:50:12 24	hard to know.

18:50:16 25 Then metals -- there's a fairly wide

- 18:50:19 1 array of metals that we routinely test for, and
- 18:50:23 2 there's been a good deal of metal testing at the
- 18:50:25 3 site. The stuff that's worrisome tends to be
- 18:50:27 4 things like lead and copper and mercury.
- 18:50:34 5 Now, you can see there's some other
- 18:50:38 6 stuff -- medical waste. I'm a geologist. I don't
- 18:50:38 7 worry about medical waste. But here's the deal.
- 18:50:44 8 Stuff was poured on the ground, stuff was stored
- 18:50:51 9 in leaking drums. A previous person in my job did
- 18:50:57 10 some calculations that come out with numbers that
- 18:51:00 11 are scary about how much stuff might have been
- 18:51:02 12 discharged to the ground and to the bay at this
- 18:51:06 13 site.
- 18:51:09 14 If you look at how this stuff works
- 18:51:11 15 together -- if battery acid is spilled on the
- 18:51:14 16 ground, it contains dissolved lead if it's a lead
- 18:51:18 17 acid battery. It may contain other metals that
- 18:51:22 18 come from the battery, but there's also scrap
- 18:51:24 19 metal on and in the ground, and so essentially any
- 18:51:28 20 metal that is present at Site 3 can be dissolved
- 18:51:31 21 in battery acid and carried down toward
- 18:51:34 22 groundwater.
- 18:51:37 23 So the question is how deep is
- 18:51:39 24 groundwater? It's ten feet. It doesn't take a
- 18:51:44 25 lot of spillage to get toxic metals all the way

- 18:51:49 1 down to groundwater at 10 to 12 feet below grade.
- 18:51:54 2 Similarly, there are solvents here -- chlorinated
- 18:51:57 3 and unchlorinated solvents that can dissolve
- 18:52:01 4 things like PCBs, that can add mix with things
- 18:52:07 5 like members of the petroleum family and carry
- 18:52:10 6 those things down to groundwater.
- 18:52:22 7 So groundwater is about ten feet below
- 18:52:24 8 the surface. As Tim said, the gradient is to the
- 18:52:25 9 north and northeast. The soils, it's largely
- 18:52:34 10 hydraulic fill which can be anything from sand
- 18:52:39 11 that moves contaminants pretty easily to clay that
- 18:52:42 12 doesn't move them hardly at all. Shell fragments
- 18:52:46 13 are common. That says to me that the source is
- 18:52:49 14 marine. It's stuff from the bay that has
- 18:52:53 15 typically been found so far in terms of the soil
- 18:52:57 16 at the site.
- 18:52:59 17 Field geologists always look at the
- 18:53:01 18 notes from the field, and there were a good many
- 18:53:04 19 cases where the field geologists reported chemical
- 18:53:06 20 and sewage odors as the geologists worked. Well,
- 18:53:13 21 the geologists were smelling something, so that's
- 18:53:17 22 just an additional indication that I look at, that
- 18:53:22 23 I worry about a little bit.
- 18:53:24 24 Same timeline as Tim showed you
- 18:53:32 25 essentially with my little red marks. PCB testing

- 18:53:36 1 in a small area, the data's lost. Okay. Well,
- 18:53:43 2 I'm not too worried about that. I'm disappointed
- 18:53:46 3 in that. Then there was geotechnical work that
- 18:53:51 4 found PCB, cadmium, copper, lead, and arsenic.
- 18:53:53 5 Those are all bad things to find, and the soil
- 18:53:58 6 sampling was limited to five feet. Well,
- 18:54:03 7 groundwater's at ten, so I worry about that
- 18:54:08 8 difference between the five feet and the ten.
- 18:54:13 9 '86 additional assessment; '87
- 18:54:13 10 verification.
- 18:54:17 11 Site inspection resampled three wells
- 18:54:28 12 that had been put in before, found -- now this is
- 18:54:31 13 all jargon -- 1,1 DCA is 1,1 dichloroethane which
- 18:54:34 14 is a chlorinated solvent that is not terribly
- 18:54:40 15 soluble in water. Yet, when it hits water, it
- 18:54:41 16 sinks, and it can carry along other materials that
- 18:54:47 17 are dissolved in it.
- 18:54:49 18 1,1 DCE is 1,1 dichloroethene which is
- 18:54:51 19 a similar chlorinated solvent. Both of these can
- 18:54:59 20 be present because other solvents are breaking
- 18:55:02 21 down in the subsurface. I don't know what's going
- 18:55:10 22 on there exactly, but those things are present and
- 18:55:13 23 those worry me.
- 18:55:16 24 CS2, carbon disulfide, that is a
- 18:55:19 25 clear, heavy, sweet-smelling solvent that's used

```
18:55:24 1 in a lot of plastics work, rubber work, various
18:55:29 2 odds and ends. It's not used for cleaning parts
18:55:35 3 like these two are, so this is from some different
18:55:39 4 source. Now, carbon disulfide will dissolve just
18:55:44 5 about anything organic and carry it along with it.
18:55:47 6 It will dissolve metals like potassium -- the
18:55:52 7 lighter metals, and it's about one-half of one
18:55:59 8 percent soluble in water, which means it's much
18:56:03 9 more soluble than these things, but still not very
18:56:07 10 soluble. It's heavier than water, which means
18:56:10 11 it's going to sink. So if a lot of -- and we
18:56:13 12 don't know -- but if a lot of this was released at
18:56:14 13 the site, it could have carried a good deal of
18:56:20 14 material down with it into groundwater and then
18:56:25 15 gradually dissolved away and be gone and so on.
18:56:28 16
                        Now, I understand that I'm sort of
18:56:30 17 saying this is sounding a little like the argument
18:56:34 18 that I as raised by a tribe of invisible Indians
18:56:36 19 and my proof is that they've let no trace. I'm
18:56:43 20 just nervous about the fact that this stuff is
18:56:46 21 there. And if it's there, it can be a bad actor,
18:56:48 22 particularly with respect to moving other
18:56:51 23 contaminants around.
18:56:56 24
                        '93 soil assessment. That's the thing
18:56:56 25 up in the northern section where there has not
```

18:57:06	1	been	too	much	work	they	removed	some	USTs.	The
----------	---	------	-----	------	------	------	---------	------	-------	-----

- 18:57:12 2 county supervised it during the closure of the
- 18:57:13 3 tanks, and they were mainly interested in the
- 18:57:20 4 diesel tank, to there wasn't a lot of testing for
- 18:57:24 5 other things that I'm worried about at the site,
- 18:57:26 6 the contaminants -- the toxic contaminants.
- 18:57:30 7 Removal site evaluation -- I should
- 18:57:38 8 have made this red -- again, this removal site
- 18:57:42 9 evaluation depth of investigation is five feet.
- 18:57:45 10 Groundwater is at ten. And they're testing for
- 18:57:54 11 things that they should be worried about but
- 18:57:57 12 they're not going to groundwater or past the
- 18:58:01 13 groundwater surface.
- 18:58:04 14 Then the removal action. 22,000 cubic
- 18:58:13 15 yards of soil -- you can read this. It was a fair
- 18:58:16 16 amount of stuff that was removed.
- 18:58:22 17 430 confirmation samples were taken
- 18:58:25 18 and analyzed for lead and PCB. Now, this is a
- 18:58:29 19 little bit tragic. 430 samples were analyzed.
- 18:58:31 20 Only 63 could be mapped. We only know now,
- 18:58:37 21 apparently, where 63 of those were. That means
- 18:58:40 22 367 of them are of no use to me in figuring out
- 18:58:52 23 what contamination there was at the site, where it
- 18:58:54 24 was, what its distribution was -- you know, was
- 18:58:58 25 the bad contamination all in one place, was it in

18:59:01	1	two	places,	was	it	in	12.	Was	it	associated	with
----------	---	-----	---------	-----	----	----	-----	-----	----	------------	------

- 18:59:05 2 one building? One pit? What? The assertion that
- 18:59:13 3 there were 430 samples taken and analyzed seems to
- 18:59:16 4 be completely correct. I have no argument with
- 18:59:19 5 that. The samples that I can use are the 63 that
- 18:59:25 6 we know where they were taken.
- 18:59:35 7 Now, down here, removal not complete
- 18:59:35 8 under the pipelines. There's like a 16-inch water
- 18:59:36 9 main that goes across the site. It goes down
- 18:59:43 10 along here.
- 18:59:47 11 All those 60 some odd samples that are
- 18:59:51 12 available from the removal site evaluation --
- 18:59:55 13 excuse me -- from the removal action, all those
- 19:00:01 14 are along this particular trench. And when you
- 19:00:06 15 get down in this area, there were samples of soil
- 19:00:11 16 that were still in the ground that come back not
- 19:00:14 17 just toxic, but hazardous under California law.
- 19:00:20 18 That means they're pretty bad soil samples, and
- 19:00:23 19 they represent soil that's still in place.
- 19:00:26 20 Now, a lot of soil was removed here,
- 19:00:30 21 but there's a lot left that hasn't been either
- 19:00:34 22 removed or really investigated.
- 19:00:38 23 This color key goes with these things.
- 19:00:41 24 This blue on here like there and there and there
- 19:00:45 25 and there, that represents places where only two

- 19:00:47 1 to four feet of soil was removed, leaving six to
- 19:00:51 2 eight feet between there and groundwater and so
- 19:00:56 3 on. The yellow, which didn't come through very
- 19:00:57 4 well at all in this scan, but I assure you there
- 19:01:04 5 are some yellow squares on there, four to six
- 19:01:10 6 feet; red 8 to 10 feet; gray 10 to 12 feet.
- 19:01:23 7 So you do some calculations and you
- 19:01:25 8 figure out -- what my calculations are is that
- 19:01:31 9 about one-third of the soil at the site above
- 19:01:36 10 groundwater has been removed and replaced. Now,
- 19:01:39 11 that's progress. That's good. I don't object to
- 19:01:43 12 that. The problem is all of that expensive data
- 19:01:46 13 that I can't use is a real frustration.
- 19:01:50 14 Then remedial investigation followed
- 19:01:57 15 up on the removal, 55 borings -- the way I read
- 19:02:01 16 it, 55 boring locations, 80 soil samples. Maximum
- 19:02:01 17 depth of investigation eight and a half feet.
- 19:02:09 18 Again, we didn't get to the groundwater. We
- 19:02:11 19 didn't get to see any of the soil below the
- 19:02:14 20 groundwater entries. And there was some water
- 19:02:19 21 sampling, metals, gamma and beta. It did turn up
- 19:02:26 22 a little, I guess -- is this correct, Tim? There
- 19:02:27 23 was a little gamma beta that turned up in the
- 19:02:30 24 water samples?
- 19:02:33 25 MS. MORLEY: Yes.

MR. MURCHISON: And then also in '99 there
was a tidal influence study done, and essentially
what that did is it confirmed that some of the
groundwater at the site is in connection with
tidal water, which is either the bay or Paleta
Creek.
Here's what keeps me up at night. Not
so much that one. Tim pointed this out. The
removal action was really not intended as a way of
closing the site, and it's very inside baseball,
but it's something that DTSC worries about.
An action that is designed to close a
site can be very different from an action that's
just intended to get some nasty stuff out of the
ground quickly, and it's the second kind of
removal that we had.
The lab analysis that was done of soil
samples taken from the bottom of the excavation
was they were only analyzed for lead and PCB.
That is regrettable because we had a much longer
list of things that we knew we were worried about
at the site, but it was only lead and PCB that it
got analyzed for. So, again, we missed an
opportunity to make progress on the other

19:04:22 25 contaminants.

19:04:24 1	So after the removal action, we know
19:04:31 2	that there's contaminated soil in place below the
19:04:33 3	water main. We don't know how much it is. We do
19:04:36 4	know that some of it is bad soil. We can't figure
19:04:42 5	out I hope that this is four 9s so I won't tell
19:04:42 6	you again this is something I have talked about
19:04:51 7	before, but during the removal site evaluation
19:04:52 8	which is the study done just before the removal
19:04:56 9	action, a lot of the soil sampling was done by
19:04:59 10	methods that disturbed the soil and allowed it to
19:05:04 11	release volatiles, and so we can't rely all that
19:05:07 12	much on the volatile analytical that was done.
19:05:14 13	I don't mean to beat that to death,
19:05:27 14	but there were hazardous concentrations found out
19:05:29 15	there and we can't map them. The northern area
19:05:32 16	remained in use. That's the stuff north of the
19:05:36 17	fence that Tim talked about. It remained in use
19:05:39 18	much longer than the southern part, so there
19:05:42 19	hasn't been anywhere near as much investigation up
19:05:45 20	there.
19:05:46 21	We don't think it's adequately
19:05:46 22	investigated, and there's not enough information
19:05:55 23	on the deeper soil below the groundwater surface.
19:05:59 24	We had contaminants that are sinkers that go down
19:06:00 25	to groundwater and keep going. We had acids that

19:06:07	1	carry	metals,	and	when	those	acids	get	to

- 19:06:11 2 groundwater, they can start to dilute and they
- 19:06:14 3 release toxic materials into the soil below the
- 19:06:19 4 groundwater interface. It's a very common thing.
- 19:06:24 5 And the other thing -- this is very
- 19:06:25 6 typical of environmental investigations at all
- 19:06:29 7 kinds of sites. When you have contamination in
- 19:06:32 8 soil and it's documented from the surface all the
- 19:06:35 9 way to the groundwater, it is very common for
- 19:06:40 10 agencies to want to confirm that that
- 19:06:43 11 contamination doesn't keep going in the soil below
- 19:06:45 12 groundwater.
- 19:06:49 13 In the earlier presentation we had
- 19:06:51 14 tonight about Site 2A you saw the pictures of an
- 19:06:56 15 excavation down to groundwater. They had a big
- 19:06:58 16 pond and there was this big plume of diesel fuel
- 19:07:04 17 coming up out of the water. That was
- 19:07:07 18 contamination below groundwater. You saw the
- 19:07:10 19 picture.
- 19:07:12 20 That's something that we're worried
- 19:07:14 21 about here at this site. It's an issue that has
- 19:07:21 22 come up between us and the Navy at Site 3 in years
- 19:07:27 23 before this. It's still an issue to us.
- 19:07:31 24 Paleta Creek. Site 4 is just east of
- 19:07:47 25 here across -- what's the boulevard called?

19:07:53 1	MS. MORLEY: Harbor.
19:07:53 2	MR. MURCHISON: Harbor Boulevard.
19:07:54 3	Groundwater the team is working on an
19:08:03 4	investigation over there that includes groundwater
19:08:05 5	work, and the gradient over there is towards the
19:08:08 6	boulevard. It's to the west. Here you cross the
19:08:15 7	railroad tracks, you cross the boulevard, and then
19:08:17 8	the gradient is almost the other way, which
19:08:21 9	suggests that there may be springs in the drainage
19:08:27 10	channels along the railroad tracks that are
19:08:29 11	allowing contaminated water to get out of both
19:08:32 12	sites into the drainage creek that goes straight
19:08:35 13	into Paleta Creek. That could be a serious
19:08:41 14	ecological risk, and it's something that we're
19:08:45 15	going to continue to be worried about.
19:08:48 16	And then there's this one. As I said
19:08:58 17	at the beginning, the stuff that we do in trying
19:09:03 18	to understand the site is to learn about what was
19:09:07 19	done there, what was used there, what processes
19:09:10 20	were there, and we really don't have a good handle
19:09:14 21	on that for this site. We have asked before for a
19:09:22 22	thorough search of the records of the Naval

19:09:23 23 Station concerning what buildings, what

19:09:23 24 facilities, what equipment was at this site, when

19:09:29 25 it was there, and to compare it with aerial and

19:09:34 1	site photo histories that might be able to be
19:09:36 2	assembled. That would allow everybody on the team
19:09:40 3	to understand "Okay. The bad actor was really the
19:09:45 4	crushing machine over the pit over there. That
19:09:49 5	was where most of the contamination got into the
19:09:49 6	ground." We don't even know where the crushing
19:09:55 7	machine over the pit was at this site other than
19:09:59 8	we have one reference saying there was such a
19:10:01 9	thing. That's just one example.
19:10:04 10	We don't know where old drums
19:10:09 11	containing stuff were stored between 1950 and 1955
19:10:15 12	or between 1955 and 1960, and we would really like
19:10:21 13	to know that so that we can help direct where to
19:10:25 14	look for things because we, too, do not wish to
19:10:29 15	drag this out, and we don't wish to say go out
19:10:31 16	there and drill a thousand more holes, okay, and
19:10:38 17	take 5,000 more soil samples. That's not what we
19:10:39 18	want.
19:10:41 19	We want the information to understand
19:10:44 20	the site, to confirm what we hope, that soil below
19:10:51 21	groundwater is clean enough to leave in place; do
19:10:58 22	the groundwater work that is being proposed, and
19:11:04 23	make some progress for real closure of this site.
19:11:12 24	This is bureaucratic, but there are
19:11:18 25	lost groundwater wells out there. Those are a bad

- 19:11:21 1 thing. They can be conduits for bad stuff to
- 19:11:25 2 continue to migrate.
- 19:11:28 3 And I have no particular evidence of
- 19:11:31 4 this, but as I said earlier, there were
- 19:11:36 5 essentially no rules about what to do with things
- 19:11:42 6 that were thrown away back in the '40s and '50s,
- 19:11:44 7 and I worry that Paleta Creek might have been a
- 19:11:50 8 useful place to pour things under the rules at
- 19:11:54 9 that time, so that's an issue that I'm concerned
- 19:11:58 10 with.
- 19:12:00 11 I tried to be quick. Are there any
- 19:12:02 12 questions?
- 19:12:04 13 MS. COLLINS: Just a point of historical
- 19:12:06 14 reference. The Site 3 interim removal action was
- 19:12:10 15 an interim removal action, but it was done
- 19:12:13 16 addressing what is now a hot button for EPA
- 19:12:17 17 environmental indicators, which there are two
- 19:12:20 18 categories: one is human health exposure and the
- 19:12:20 19 other is groundwater impact.
- 19:12:24 20 And the surface -- Site 3 was a
- 19:12:26 21 parking lot and there were cracks in it and little
- 19:12:29 22 bumps in it, and there was a concern by the Navy
- 19:12:30 23 that there might be a potential for a pathway
- 19:12:35 24 there, so the Navy was acting kind of preemptively
- 19:12:38 25 to avoid that pathway and protect the public.

- 19:12:43 1 MR. MURCHISON: Please understand I'm
- 19:12:44 2 not -- the last thing I'm trying to do is assess
- 19:12:49 3 blame. I'm trying to tell you what my remaining
- 19:12:50 4 concerns are.
- 19:13:10 5 MR. BISHOP: No questions here.
- 19:13:11 6 That was very thorough. Thank you.
- 19:13:13 7 MR. MURCHISON: Thanks for your attention.
- 19:13:13 8 MR. BISHOP: Karen, you're next.
- 19:13:37 9 MS. COLLINS: My presentation is mostly in
- 19:13:37 10 power point, but I have a couple of moving clip
- 19:13:41 11 files in here that would be hard to find. So can
- 19:13:45 12 everybody hear me okay?
- 19:13:47 13 MR. BISHOP: This is Karen Collins from
- 19:13:47 14 Bechtel, and she's going to talk about Site 4.
- 19:13:52 15 MS. COLLINS: Well, Site 4 -- I think a lot
- 19:13:57 16 of you were here in July for the RAB when we went
- 19:14:00 17 out and did a site visit. We were in the middle
- 19:14:02 18 of the groundwater investigation, Phase 2 of the
- 19:14:03 19 RI in July when we met the last time, and I think
- 19:14:09 20 a lot of you -- I know Craig was out there, and I
- 19:14:12 21 think Jerry was out at the field demos. We got to
- 19:14:16 22 see an MMW fence being prepped for sampling.
- 19:14:21 23 So I wanted to give the RAB an update
- 19:14:24 24 on the work that was done during the RI and some
- 19:14:26 25 of the findings. I'm not going to take up a lot

- 19:14:32 1 of time going over the stuff you've already heard,
- 19:14:32 2 but I want to go over the site background and
- 19:14:35 3 history just briefly, over the RI objectives, the
- 19:14:40 4 RI field work overview, and then some of the data
- 19:14:41 5 that we've got in hand now. We'll talk about the
- 19:14:41 6 next steps for Site 4, and then go over the report
- 19:14:49 7 schedule.
- 19:14:50 8 Site 4 is a 14-acre, pretty flat --
- 19:14:51 9 topographically flat site. It's bounded by Harbor
- 19:14:56 10 Drive on the west, Paleta Creek on the south, San
- 19:15:00 11 Diego Trolley line on the east, and the City of
- 19:15:03 12 San Diego Sewer and Pump Station to the north.
- 19:15:07 13 That may have been some of those odors
- 19:15:09 14 that were in the field.
- 19:15:13 15 MR. MURCHISON: That could be.
- 19:15:14 16 MS. COLLINS: We noticed those odors, too.
- 19:15:15 17 The site was paved in 1975. It's used
- 19:15:19 18 for recycling of Navy materials. It's also used
- 19:15:20 19 for storage and warehousing of DoD property.
- 19:15:24 20 The site was identified, as was Site
- 19:15:25 21 3, in the 1986 IAS. The reason it was listed was
- 19:15:30 22 because of waste oil that was reportedly deposited
- 19:15:34 23 on the site for dust suppression. That was a
- 19:15:35 24 common practice. I think everyone's heard about
- 19:15:38 25 that.

19:15:39 1	Briefly the site history: From 1943
19:15:43 2	to 1975 the Navy used Site 4 as a supply center
19:15:48 3	storage yard. If you look at the earlier photos,
19:15:49 4	there are trucks mostly and vehicles that are
19:15:53 5	parked over there. Not a lot of activity really
19:15:57 6	in those early years.
19:15:59 7	From 1975 to 1981 the site was used as
19:16:07 8	a defense property disposal office or DPDO storage
19:16:08 9	yard. From 1981 to present the site has been
19:16:10 10	partitioned into two. We call it the north half
19:16:11 11	and the south half. The north half is pretty
19:16:16 12	active. In fact, a lot of you have been out to
19:16:19 13	the site at the last RAB in July. They've got all
19:16:22 14	kinds of stuff up there. We'll talk a little bit
19:16:23 15	more about some of the things. And the southern
19:16:27 16	portion of the site is used by DLA, Defense
19:16:31 17	Logistics, for storing landing craft boats.
19:16:34 18	We had three central objectives for
19:16:37 19	the RI. The first was to characterize the nature
19:16:40 20	and extent of contamination both in soil and
19:16:42 21	groundwater, the second was to determine risk to
19:16:46 22	human health and the environment, and the third
19:16:49 23	was to compile a dataset suitable to support a
19:16:51 24	risk management decision for the site. Typically
19:16:54 25	that would be either progression to a feasibility

- 19:16:56 1 study or no further action.
- 19:17:03 2 The RI field work was broken up into
- 19:17:05 3 two phases. Phase 1 was soil sampling. We did a
- 19:17:09 4 total of 60 borings out there. Four of those were
- 19:17:13 5 deep borings drilled to 50 feet bgs. We collected
- 19:17:16 6 soil samples for chemical and geotechnical
- 19:17:18 7 analyses in those deep borings, but we also had a
- 19:17:22 8 continuous course where we were able to log
- 19:17:25 9 lithology very accurately all the way down to
- 19:17:28 10 50 feet.
- 19:17:30 11 49 borings were on a 100-foot grid.
- 19:17:33 12 Those were the random samples. The RI was
- 19:17:36 13 structured so that we could have a real good solid
- 19:17:38 14 dataset. We had random samples on a 100-foot
- 19:17:40 15 grid, and then 11 borings were located at
- 19:17:44 16 judgmental areas where we knew there was previous
- 19:17:44 17 contamination based on previous sampling that was
- 19:17:50 18 done at the site.
- 19:17:52 19 We took three samples per boring at
- 19:17:55 20 multiple locations. A couple of them we
- 19:17:57 21 encountered groundwater in a little more shallower
- 19:17:57 22 type recovery, so I think there were a couple of
- 19:18:01 23 them we only had two samples from.
- 19:18:04 24 Phase 2 was a groundwater
- 19:18:05 25 investigation, and Phases 1 and 2 were punctuated

19:18:08	1	by	а	meeting	with	DTSC	at	the	end	of	June	where	we
----------	---	----	---	---------	------	------	----	-----	-----	----	------	-------	----

- 19:18:13 2 sat down and looked at all of the lithology that
- 19:18:16 3 we had on the site and made some decisions
- 19:18:17 4 together about ways to optimize the well design.
- 19:18:22 5 So DTSC actually and the Regional Board, I
- 19:18:25 6 believe, was in on that meeting as well.
- 19:18:27 7 One thing I also want to mention is
- 19:18:30 8 when we did the soil borings for both the soil and
- 19:18:34 9 the groundwater monitoring wells, we also screened
- 19:18:36 10 for RAD. That was one of the work plan call outs.
- 19:18:44 11 We did that. We didn't find anything. We
- 19:18:44 12 screened for alpha, beta, and gamma and came up
- 19:18:44 13 with nothing, which was expected. The site
- 19:18:48 14 history at Site 4 is obviously a lot different
- 19:18:49 15 than Site 3. It's not quite as complex, which is
- 19:18:51 16 fine by me.
- 19:18:56 17 Phase 2 we installed and developed and
- 19:18:58 18 sampled 11 new wells for the RI. We also sampled
- 19:19:03 19 three existing monitoring wells. One of the
- 19:19:07 20 previous wells had been destroyed. The wells out
- 19:19:13 21 at Site 4 had a pretty hard life. Those landing
- 19:19:14 22 craft trucks are real heavy and things happen.
- 19:19:19 23 Aquifer testing and water level study
- 19:19:23 24 was also done to assess hydraulic communication
- 19:19:25 25 between groundwater and Paleta Creek.

19:19:29 1	We did Pete mentioned doing a
19:19:33 2	25-hour study, and we actually did a 25-hour study
19:19:37 3	during a high high and low low tide to see an
19:19:42 4	extreme scenario. And then we waited for a
19:19:45 5	22-hour period bracketed a mean tidal scenario;
19:19:50 6	and we did a 72-hour water level study. We had
19:19:53 7	transfusers or dataloggers in 11 wells plus in
19:19:55 8	Paleta Creek at a surveyed point. We plotted all
19:20:01 9	of that water level data together. We were taking
19:20:04 10	readings every ten seconds. And plotted that, and
19:20:08 11	that graph will be in the RI that you'll see in a
19:20:11 12	couple months.
19:20:12 13	But basically, as Dave said, the water
19:20:15 14	level is moving. Water is still only moving west,
19:20:18 15	and Paleta Creek is actually 90 percent of the
19:20:25 16	time higher the water level is higher in the
19:20:27 17	creek than in the groundwater, so there's little
19:20:32 18	or no hydraulic communication between the two.
19:20:35 19	There's a little bit of localized communication
19:20:36 20	between the one well that's right adjacent to the
19:20:41 21	creek. That's also an extremely shallow zone.
19:20:45 22	This is an 1859 bathymetric map of San
19:20:51 23	Diego Bay that shows Naval Station in red and then
19:20:55 24	Site 4 here in yellow. And what's significant
19:20:58 25	about this is the carving of Paleta Creek channel.

- 19:21:01 1 This is all before the site was reclaimed, and
- 19:21:07 2 it's basically just a tidal marsh, a very low
- 19:21:11 3 tidal marsh.
- 19:21:13 4 Same bathymetric map. This one is
- 19:21:18 5 from 1930. Again, Naval station boundary in red
- 19:21:20 6 and Site 4 in yellow. Site 4 is still a
- 19:21:25 7 topographic low, and you can see that there's been
- 19:21:28 8 some reclamation of areas of Naval Station north
- 19:21:31 9 and west of the site.
- 19:21:34 10 The fill that was used to reclaim this
- 19:21:39 11 area and Site 4 ultimately and much of coastal
- 19:21:46 12 downtown San Diego was drawn from a variety of
- 19:21:46 13 sources. Much of it was hydraulic from the bay.
- 19:21:49 14 We actually saw shell fragments in a lot of the
- 19:21:51 15 fill that we saw at Site 4. There may have also
- 19:21:54 16 been some mechanical fill, but hydraulic fill is a
- 19:21:57 17 notorious source of PAHs, mostly from pier piling
- 19:22:02 18 releases.
- 19:22:03 19 Physical characteristics of the site:
- 19:22:08 20 the upper six to ten feet of Site 4 is composed of
- 19:22:11 21 the fill. The site was filled in stages between
- 19:22:14 22 the '40s and the '60s. And below the fill there's
- 19:22:18 23 a native clay layer that -- basically that's tidal
- 19:22:23 24 marsh mud. And that stuff is a very competent
- 19:22:29 25 clay. It would be great for lining a landfill.

19:22:31 1	We did geotech tests on a number of
19:22:33 2	those samples, and the permeability ranges from 10
19:22:36	to the minus 8 to 10 to the minus 9 centimeters
19:22:36 4	per second. Very competent clay.
19:22:42 5	Below that there was a fine-grained
19:22:43 6	unit that contains that clay layer from about 7 to
19:22:49 7	16 feet in the loss, and the surface of that clay
19:22:53 8	layer is well defined.
19:22:54	Below the clay, the third unit at the
19:22:56 10	site, is a courser grained water-bearing unit and
19:22:59 11	that's below the clay.
19:23:03 12	Below the course grain unit in the
19:23:05 13	deep borings, the 50 footers, we also encountered
19:23:08 14	a deeper fine-grained unit, and that was about
19:23:11 15	48 feet bgs.
19:23:15 16	The water-bearing unit below the clay
19:23:17 17	is under confined/semiconfined conditions.
19:23:20 18	There's a thin layer, maybe a foot or so of
19:23:23 19	perched water above the clay. That's not really
19:23:27 20	representative aquifer material. And with DTSC
19:23:30 21	and the Water Board, we elected not to screen in
19:23:31 22	that interval but to go below the clay for our
19:23:35 23	wells.
19:23:36 24	This is where I want to show this

19:23:49 25 is going to be a 3-D movie clip of the lithology

- 19:23:53 1 of Site 4. And if you like it, I'll play it twice
- 19:23:56 2 and kind of talk you through it the first time.
- 19:23:58 3 It goes a little bit fast. But this is a model of
- 19:24:03 4 what we saw. The north part and the south part.
- 19:24:07 5 This is the Paleta Creek channel. Now, here are
- 19:24:07 6 the three units: the shallow, here's the fill,
- 19:24:07 7 there's the clay, and below that the course grain
- 19:24:16 8 material.
- 19:24:20 9 You can see the fill six to ten feet
- 19:24:24 10 thick, the clay layer about 16 feet thick in the
- 19:24:29 11 thick parts.
- 19:24:30 12 Now what's going to happen is the
- 19:24:32 13 screen is going to transition in a minute and then
- 19:24:35 14 it's going to start pulling back and then moving
- 19:24:35 15 cross-sections from west to east. Here we go.
- 19:24:45 16 This is the bay mud. This is the fill. And the
- 19:24:50 17 monitoring wells are going by as we move east.
- 19:24:57 18 That's it. Does anyone want to see it again? Was
- 19:25:04 19 once enough? It will be a movie thing in the RI
- 19:25:08 20 too, so you can see it again.
- 19:25:10 21 Basically those are the three units at
- 19:25:15 22 the site, and it's pretty straightforward
- 19:25:22 23 geologically.
- 19:25:22 24 The groundwater flow is generally
- 19:25:22 25 toward Harbor Drive. The lowest groundwater

19:25:25 1	elevation is at MW-10. That's the well that we
19:25:28 2	were at at the RAB when you all were out there.
19:25:32 3	Something funny is going on at that well. That's
19:25:35 4	the lowest water level at the whole site, and the
19:25:40 5	well is in pretty close proximity to an electrical
19:25:43 6	conduit. It's a pretty good size subsurface
19:25:48 7	conduit, and we're suspecting that there may be
19:25:51 8	some interference with the water level as a result
19:25:52 9	of that. We're doing a little more investigating.
19:25:57 10	There's also a huge like a six or
19:25:59 11	eight foot sewer main that goes under Harbor
19:26:02 12	Drive that may be affecting water levels as you
19:26:04 13	approach the western boundary of the site.
19:26:07 14	MW-03A is the only well that had a
19:26:13 15	significant response from Paleta Creek. That's
19:26:15 16	the one that's right adjacent to the creek and
19:26:18 17	screened in the shallower push aquifer.
19:26:23 18	MW-06 and MW-07 also respond to Paleta
19:26:25 19	Creek a little more quickly than MW-03A, and that
19:26:25 20	indicates again the confined conditions.
19:26:32 21	I already said water is moving from
19:26:35 22	Paleta Creek 90 percent of the time.
19:26:39 23	This is a water level contour map or
19:26:42 24	potentiometric surface map. The dark blue lines

19:26:45 25 show lines of equal groundwater elevation, and the

19:26:48 1	numbers are mean low low water. So that's two
19:26:53 2	feet and one and a half feet and one foot and it
19:26:56 3	flows from high to low. These are the flow lines
19:27:01 4	and light blue that we derived from that.
19:27:07 5	The soil results: We have over 290
19:27:11 6	samples that were collected for VOCs and
19:27:12 7	pesticides. Those compounds were not reported in
19:27:17 8	any of the soil samples above residential PRGs.
19:27:24 9	I should mention, too, that in the
19:27:26 10	time since the work plan came out, the Navy's made
19:27:28 11	a management decision that the site will be used
19:27:32 12	for continued industrial use, so the residential
19:27:35 13	scenario is really not in the picture at this
19:27:39 14	point. We consulted with Brian Davis, the DTSC
19:27:39 15	toxicologist, and he concurred that there's no
19:27:45 16	reason spending the extra money to do a
19:27:48 17	residential risk assessment, so really the
19:27:50 18	residential is in there for comparison purposes,
19:27:51 19	but we didn't see VOCs or pesticides.
19:28:02 20	Two metals were reported above
19:28:02 21	industrial PRGs. Arsenic the ever present
19:28:02 22	arsenic. Actually, the background at Naval
19:28:07 23	Station background numbers higher than the

19:28:09 24 industrial PRGS, so we know we just have a

19:28:13 25 regionally elevated concentration.

19:28:16 1	There were two lead samples that were
19:28:18 2	also over the industrial PRGs. They were both
19:28:19 3	located at trench 2 as was the PCBs. There were
19:28:25 4	two samples that were over the industrial PRGs.
19:28:25 5	Those were also in trench 2. Trench 2 is an area
19:28:30 6	that was even after the site was filled, it was
19:28:33 7	a little bit low in some of the photos from the
19:28:34 8	'50s, so there was probably another fill event
19:28:39 9	there.
19:28:42 10	Six PAHs were reported at
19:28:42 11	concentrations above PRGs. Nothing really
19:28:49 12	surprising.
19:28:50 13	There were three dioxins/furans
19:28:53 14	reported that were in two locations: one was at
19:28:56 15	MW-12 right next to Trench 2, and those were over
19:29:04 16	the adjusted industrial PRGs. There's so many
19:29:07 17	dioxins and furans. There's not a PRG for each of
19:29:11 18	those, so there's what's called a toxicity
19:29:13 19	equivalency factor that's assigned based on one of
19:29:16 20	the dioxin compounds. And so each one doesn't
19:29:19 21	have a compound, but if you assign the TEF, three
19:29:23 22	of those compounds did exceed the level.
19:29:29 23	We're calculating health risk for
19:29:33 24	industrial and construction worker scenarios
19:29:35 25	currently.

```
19:29:38 1
                        This is a map that shows the
19:29:40 2 distribution of the Benzo(a) pyrene in the soil.
19:29:45 3 Back to the reason the site was listed in the IAS,
19:29:47 4 it was listed because of waste oil applications.
19:29:50 5 So Benzo(a)pyrene should be a great tracer for
19:29:54 6 waste oil. And when you look at this, you think
19:30:00 7 "Yeah, maybe so. It's kind of all over the
19:30:04 8 place."
19:30:04 9
                        What's not reflected in this map is
19:30:06 10 the extreme variability that we're seeing in the
19:30:09 11 data, not just with depth because in a surface
19:30:13 12 application scenario you expect to see higher
19:30:17 13 concentrations at the surface tapering off with
19:30:21 14 depth. What we're seeing are concentrations that
19:30:28 15 are tremendously variable. And in the RI sampling
19:30:30 16 we did actually two analyses per sample, different
19:30:36 17 analytical methods. 8270 and 8310 methods were
19:30:42 18 both used on each of the soil samples. And, you
19:30:46 19 know, the expectation would be that when you take
19:30:49 20 a six-inch soil sample in a tube and collect two
19:30:52 21 30-milligram alloquats and run one for 8270, one
19:30:56 22 for 8310, you'd get about the same number, maybe a
19:31:00 23 little different. It's not at all what we saw.
19:31:07 24 The numbers were all over the map -- order of
19:31:08 25 magnitude, deviations, and not training the same
```

- 19:31:10 1 way. In other words, the 8270s weren't always
- 19:31:12 2 higher. The 8310s weren't consistently lower.
- 19:31:17 3 Sometimes they were higher; sometimes they were
- 19:31:18 4 lower. So what that told us was that across the
- 19:31:23 5 site and even within a single 6-inch interval
- 19:31:24 6 there was tremendous variability in the PAH
- 19:31:29 7 distribution.
- 19:31:33 8 And, you know, one of the kind of
- 19:31:36 9 obvious reasons for that would be that it was
- 19:31:38 10 present in the fill -- in the hydraulic fill or in
- 19:31:41 11 the mechanical fill that was distributed at the
- 19:31:44 12 site. It's not consistent with the point source
- 19:31:48 13 or a surface release except for a few localized
- 19:31:51 14 exceptions.
- 19:31:51 15 Trench 2 we talked about. SB-12.
- 19:31:55 16 Both of those are areas that are topographic areas
- 19:31:59 17 identified on aerial photos.
- 19:32:03 18 SB-16 in Trench 3 is immediately
- 19:32:07 19 adjacent to the railroad right-of-way on the
- 19:32:10 20 western side of the site. PAHs are -- they are
- 19:32:15 21 actually almost present anywhere you look. You
- 19:32:19 22 can go to Home Depot and construct a nice raised
- 19:32:22 23 bed garden out of railroad ties and you'll have
- 19:32:22 24 PAHs in your garden, and a lot of people do. They
- 19:32:27 25 are pretty much ubiquitous in the urban and rural

19:32:32	1	environments.

- 19:32:35 2 At Site 4 some of the non-point
- 19:32:36 3 sources that we've identified are aerial
- 19:32:40 4 depositions from the railroads and the roads that
- 19:32:42 5 are sandwiched right between both of those. The
- 19:32:45 6 site's been used for car and equipment parking for
- 19:32:48 7 60 years. And then the reason it was listed is
- 19:32:51 8 the waste oil application for dust suppression.
- 19:32:55 9 The nature and extent of PAHs and most
- 19:32:58 10 of the metals are defined by the distribution and
- 19:32:59 11 emplacement of the fill that was used at the site,
- 19:33:04 12 and it's likely the PAHs were already in the fill
- 19:33:08 13 when it was placed. Again, they might be a great
- 19:33:11 14 source for PAHs. No PAHs were identified in the
- 19:33:15 15 underlying native clay. That makes sense. PAHs
- 19:33:22 16 aren't very soluble or very mobile. And any
- 19:33:26 17 migration from the fill to the groundwater would
- 19:33:27 18 be impeded by that clay.
- 19:33:30 19 So the conclusions, based on the RI
- 19:33:33 20 data and the previous data, are for soil that the
- 19:33:38 21 nature and extent of contamination is defined by
- 19:33:42 22 the fill that was used to reclaim the site from
- 19:33:45 23 the tidal marsh.
- 19:33:47 24 PAHs and PCBs and a few isolated
- 19:33:50 25 metals -- the arsenic and the lead -- are

19:33:51 1 cc	ompounds of	interest.	None o	of them	are	looking
---------------	-------------	-----------	--------	---------	-----	---------

- 19:34:00 2 like real risk drivers or they're not elevating
- 19:34:02 3 the site risk to significant levels.
- 19:34:08 4 The current soil data is suitable to
- 19:34:10 5 perform a risk assessment, and we've actually done
- 19:34:12 6 a preliminary calculation to the site.
- 19:34:16 7 Additional soil sampling is not
- 19:34:16 8 required. There are site boundary constraints
- 19:34:19 9 that are pretty obvious: the railroad on the west;
- 19:34:22 10 there's a 50 foot right-of-way that is a buffer;
- 19:34:26 11 the city pump station to the north. We don't want
- 19:34:29 12 to drill there; and the trolley on the east and
- 19:34:31 13 the creek on the south. So the site is really
- 19:34:33 14 constrained by those boundaries, and there would
- 19:34:38 15 be little value in additional sampling anyway.
- 19:34:41 16 Groundwater data: There were three
- 19:34:45 17 existing wells at the site, two of those are
- 19:34:50 18 on-site; one is off-site. We drilled 11 new wells
- 19:34:53 19 and those are the deeper wells.
- 19:34:55 20 We identified chlorinated solvents
- 19:34:57 21 PCE, TCE, DCE, and vinyl chloride in some of the
- 19:35:02 22 groundwater samples. Some of this it wasn't a big
- 19:35:10 23 surprise. There have been TCE identified in MW-02
- 19:35:12 24 in the middle of the south part of the site
- 19:35:15 25 previously. What was a surprise was when we

19:35:19 1	positioned our off-site upgradient wells to have
19:35:23 2	the highest concentrations in Naval Station come
19:35:27 3	from that well.
19:35:29 4	The greater upgradient concentrations
19:35:33 5	obviously suggest an off-site source. There may
19:35:38 6	be a regional situation here. There's not a lot
19:35:41 7	of data so it's kind of early to guess about this,
19:35:43 8	but we know there are two studies that have
19:35:44 9	already been done. One is at Building 3300 which
19:35:49 10	is the Navy's medical building just a little bit
19:35:54 11	east and maybe a quarter of the way down from the
19:35:59 12	north part of Site 4. In 1996 there was a UST
19:36:03 13	study done for that building, and they found about
19:36:07 14	21 parts per billion of TCE in a grab sample. It
19:36:13 15	was a push sample, so we don't know with great
19:36:14 16	accuracy where it was from, but that was reported.
19:36:20 17	And in Building 3155, which is the
19:36:23 18	warehouse across the Creek, a 1992 sample there
19:36:27 19	reported PCE concentrations of 27 and 33 micograms
19:36:32 20	per liter, and the TCE at 3 and 4 micrograms per
19:36:33 21	liter. And then, in addition, we did a limited
19:36:42 22	file review and found that there's a lot of
19:36:45 23	potential sources upgradient.
19:36:48 24	So the conclusions from the

19:36:49 25 groundwater data are the VOCs, although they were

- 19:36:52 1 reported at Site 4, they're at higher
- 19:36:56 2 concentrations in off-site upgradient wells, and
- 19:37:00 3 they're not from a release at Site 4.
- 19:37:04 4 There's been no on-site VOC source
- 19:37:07 5 identified in all the samples we collected.
- 19:37:07 6 Nothing in the site history, too, that would
- 19:37:11 7 suggest the source. The highest VOC
- 19:37:14 8 concentrations are offsite. VOCs present in Site
- 19:37:21 9 4 are in the confined groundwater below that thick
- 19:37:24 10 clay layer that we just looked at. VOCs are not
- 19:37:28 11 reported in the wells that are screened above the
- 19:37:30 12 clay layer, and the compounds that are in the
- 19:37:36 13 groundwater are entirely unrelated to the
- 19:37:37 14 compounds that are in the soil.
- 19:37:40 15 Next Steps: We'll proceed with the
- 19:37:44 16 risk assessment, and the numbers look good. They
- 19:37:47 17 look a lot like what we calculated in 2000 in the
- 19:37:48 18 RSE. Risk on the low end, on the good end of the
- 19:37:55 19 NCP acceptable risk range for industrial worker.
- 19:38:02 20 Groundwater ingestion is not a
- 19:38:03 21 pathway. It's a nonbeneficial use aquifer. The
- 19:38:07 22 VOC vapor pathway is not applicable because of the
- 19:38:09 23 clay layer. We did incorporate the VOCs. They
- 19:38:15 24 were low low, like jay flag mostly value in the
- 19:38:18 25 soil. Those are in the Johnson & Ettinger model.

19:38:24	1	We're preparing our RI report now, and
19:38:25	2	it's scheduled to go to the Navy in March. The
19:38:29	3	Navy will review it. We'll revise it accordingly
19:38:31	4	and then issue it to the agencies and the RAB in

- 19:38:35 5 May.
- 19:38:37 6 The project is right on schedule.
- 19:38:37 7 It's right where we plan to be. We plan to
- 19:38:40 8 deliver it March 4th, I think. The original
- 19:38:47 9 schedule we're going to be about two weeks behind
- 19:38:48 10 that, so it's pretty good.
- 19:38:50 11 And I think the Navy's planning to
- 19:38:54 12 initiate a groundwater investigation independent
- 19:39:00 13 of Site 4. Site 4 is not a source that the Navy
- 19:39:03 14 would -- it's obviously interested in knowing
- 19:39:06 15 where that groundwater keeps coming from.
- 19:39:10 16 Any questions?
- 19:39:14 17 MR. BISHOP: Thank you.
- 19:39:19 18 MS. COLLINS: Here's the TCE plume. This
- 19:39:23 19 is the Navy Medical building. This is where TCE
- 19:39:29 20 was reported in '96, so we know it's up here. We
- 19:39:32 21 had a 100 parts per billion in MW-14 in our
- 19:39:32 22 off-site upgradient wells. Highest concentrations
- 19:39:38 23 and on-site concentrations taper off pretty
- 19:39:43 24 dramatically.
- 19:39:48 25 MR. HEIRONIMUS: You might want to point

- 19:39:49 1 out why the plume or whatever ends at the site
- 19:39:53 2 boundary.
- 19:39:54 3 MS. COLLINS: The plume was truncated at
- 19:39:55 4 the site boundary. The contours continue, but
- 19:39:59 5 this was done using a 3-D screening model, and it
- 19:40:05 6 was wrapping around MW-14, and it's really an open
- 19:40:10 7 ended contour. We know there's a source up here.
- 19:40:11 8 We don't know that there's a boundary on the other
- 19:40:12 9 side of MW-14 here. So the plumes are truncated
- 19:40:20 10 at the Site 4 boundary.
- 19:40:23 11 MR. MURCHISON: So you've trimmed them off.
- 19:40:26 12 MS. COLLINS: Yeah, we trimmed them. MW-05
- 19:40:26 13 was a no detect.
- 19:40:31 14 MR. HEIRONIMUS: The model required a
- 19:40:31 15 boundary to be complete.
- 19:40:40 16 MS. MORLEY: Does anybody have questions in
- 19:40:43 17 general on anything? Okay.
- 19:40:46 18 Darren was thinking about meeting
- 19:40:46 19 here, but since we're being kicked out, hopefully
- 19:40:46 20 our next meeting is going to be in July and maybe
- 19:40:53 21 we could do something in the field again and maybe
- 19:40:56 22 instead of even a demonstration, something like a
- 19:40:58 23 hands on. If you'd be interested in doing some
- 19:41:02 24 kind of sampling or something like that -- playing
- 19:41:06 25 in the field.

19:41:12 1 CMDR KEMP	Is o	our next	meeting	in July	or
----------------------	------	----------	---------	---------	----

- 19:41:14 2 April?
- 19:41:14 3 MS. MORLEY: April. I'm sorry. April. It
- 19:41:19 4 might be too cold and dark that early.
- 19:41:22 5 Does anyone have any --
- 19:41:43 6 MR. STANG: The 7th is when the time
- 19:41:27 7 changes.
- 19:41:56 8 MS. MORLEY: Does anyone have any suggested
- 19:41:59 9 agenda topics for the next RAB then? Okay.
- 19:42:14 10 CMDR KEMP: Can I just make a comment?
- 19:42:14 11 I mentioned a little bit earlier about
- 19:42:17 12 a meeting I went to yesterday, and I'll have to
- 19:42:22 13 read the name of it because it's kind of long, but
- 19:42:24 14 it's "California Office of Military Base Retention
- 19:42:29 15 and Reuse Workshop." And it's some study, I
- 19:42:35 16 guess, that the State of California has done. And
- 19:42:37 17 it looked at a lot of different studies.
- 19:42:37 18 It was kind of focused at impacts of
- 19:42:44 19 the Navy on the community and the community on the
- 19:42:49 20 Navy. And the invitees included representatives
- 19:42:56 21 from some elected officials, Navy representatives,
- 19:42:59 22 city planning, and there's a bunch of things they
- 19:43:02 23 were looking at that will be, I guess, brought
- 19:43:06 24 back to Sacramento to be discussed in some sort of
- 19:43:08 25 report, I suspect.

19:43:10 1	But one thing that came out of it, a
19:43:12 2	lot of folks who don't know the Navy, know that
19:43:19 3	we're here, are either suspicious or that's
19:43:23 4	probably a bad term but just don't know what's
19:43:27 5	going on. There's not a lot of the good news
19:43:29 6	stories don't get told, and there is a lack of
19:43:33 7	some of the folks feel there's a lack of dialogue
19:43:34 8	in planning and things like this. Actually, the
19:43:41 9	RABs were kind of mentioned as a means of
19:43:45 10	dialogue.
19:43:46 11	What I took out of there was you can't
19:43:47 12	communicate enough. And a forum like this is a
19:43:53 13	very viable thing. There's certainly points of
19:43:55 14	disagreement. There's a couple of sites that were
19:43:57 15	mentioned today. But having that disagreement in
19:43:59 16	a forum like this where you can address the
19:44:00 17	issues, talk about the issues, move forward a lot
19:44:06 18	better than not having the disagreement in a forum
19:44:08 19	like this and find out about it after the fact
19:44:10 20	that we have the disagreement.
19:44:11 21	So it's just an observation. This is
19:44:14 22	my second one of these. I think there's a lot of
19:44:18 23	value added that I see from the Navy side, anyway,
19:44:20 24	and hopefully from the public side of doing this.
19:44:24 25	When you're searching for topics for

- 19:44:27 1 the next RAB, I don't know if there is something
- 19:44:33 2 that maybe -- we've had very confined discussions.
- 19:44:37 3 If there's something else out there that is of
- 19:44:41 4 interest, we might want to open it up.
- 19:44:48 5 MS. MORLEY: Does that bring up anything?
- 19:44:50 6 MR. BISHOP: I'm just looking at the chart
- 19:44:51 7 here. That one plume down to the south in RI 4
- 19:45:00 8 that we just looked at, just eyeballing the line,
- 19:45:05 9 it looks like you could just about draw a straight
- 19:45:10 10 line back over to the old hobby shop.
- 19:45:14 11 MS. MORLEY: That's one of the ones that
- 19:45:14 12 we're looking at because that's actually an issue
- 19:45:16 13 we want to resolve in risk management, but
- 19:45:18 14 actually if you look at the plumes and look at the
- 19:45:22 15 sites, it goes back here. So it looks like it's
- 19:45:25 16 kind of open. It looks like that it's possible
- 19:45:28 17 that that might be a contributor, but I think it's
- 19:45:30 18 probably coming from off base just because of the
- 19:45:32 19 concentrations there are so much higher than at
- 19:45:37 20 the Navy Medical, which was a UST. That was where
- 19:45:41 21 we got the sample from was that UST and we
- 19:45:44 22 actually sampled for that.
- 19:45:46 23 MR. BISHOP: Well, that spoiled my theory
- 19:45:47 24 of oil at the old hobby shop.
- 19:46:02 25 I don't have anything in particular to

- 19:46:02 1 talk about. Very thorough presentations.
- 19:46:27 2 MS. MORLEY: Would you guys be interested
- 19:46:27 3 in like maybe total maximum daily loads? Naval
- 19:46:32 4 Station has to come up with the MDLs for Chollas
- 19:46:36 5 and Paleta Creek, and we're discussing that with
- 19:46:39 6 the Water Board right now. Even though we
- 19:46:43 7 eventually have to go through San Diego/National
- 19:46:45 8 City because, obviously, the Paleta/Chollas Creek
- 19:46:50 9 runs along the urban water shed before it -- we're
- 19:46:52 10 the very end of the line, but would you be
- 19:46:55 11 interested in learning about something like that?
- 19:46:59 12 MR. BISHOP: That has been an issue a
- 19:46:59 13 couple of times before where the contamination
- 19:47:04 14 into the creek ends up at the Naval Station and
- 19:47:08 15 it's from an upstream source. It's not being
- 19:47:12 16 generated here, and yet we're the ones that have
- 19:47:15 17 to deal with it.
- 19:47:17 18 MS. MORLEY: Well, basically that's the
- 19:47:17 19 read we're getting from the Water Board is that
- 19:47:22 20 may be but prove it, so that's coming.
- 19:47:25 21 MR. McNUTT: Are you doing any long-range
- 19:47:27 22 studies?
- 19:47:29 23 MS. MORLEY: Well, the MDLs comes from
- 19:47:32 24 what's called a 303D report. The 303D
- 19:47:35 25 incorporates the water bodies. The state lists

19:47:40 1	them and sends it to EPA. And with 303D sites you
19:47:44 2	have to determine for which chemicals it was
19:47:47 3	listed for, yet you're going to do what the MDLs,
19:47:51 4	maximum daily loads, that go into that water body
19:47:55 5	and what you're going to do to meet that standard
19:47:57 6	once you've established it. And, unfortunately,
19:48:00 7	for Chollas and Paleta Creek it was total
19:48:04 8	chemistry. So it's kind of a bay goal to me.
19:48:13 9	CMDR KEMP: Is there a way to get Phase 2
19:48:12 10	permitted?
19:48:12 11	MS. MORLEY: It's tied into it, but it's
	MS. MORLEY: It's tied into it, but it's kind of a separate program. It's not under the
19:48:15 12	
19:48:15 12 19:48:16 13	kind of a separate program. It's not under the
19:48:15 12 19:48:16 13 19:48:19 14	kind of a separate program. It's not under the MPDS permit. It's under a different regulation

19:48:38 19 contaminated with sediments, which it's possible;

19:48:29 17 eventually we're going to try to do the RI program

19:48:35 18 because there's also concern that the RI sites are

- 19:48:42 20 but how do you determine, looking at sediments
- 19:48:43 21 only, which pieces of contamination came from the
- 19:48:47 22 Navy and which came from other places. Unless you
- 19:48:52 23 look at groundwater or something like that, you
- 19:48:54 24 can't really make that determination.
- 19:48:56 25 And so I think the MDL thing might be

19:49:00	1	tied into the IR program, these particular RI
19:49:03	2	sites. I don't know that the Navy under the
19:49:05	3	current contract can afford the cost of
19:49:09	4	remediating. I don't know if you know this.
19:49:11	5	Southwest and National shipyard went through this
19:49:15	6	and they just did that remedial action where they
19:49:17	7	had to dredge out all the sediment, and that was
19:49:20	8	part that was their remedial action for that,
19:49:22	9	so we're probably headed down that same road.
	10	MR. BISHOP: Where were the sediments from?
	11	MS. MORLEY: Paleta and Chollas Creek. And
	12	then, again, between Piers 2 and 8, that whole
	13	here's the creek and here's Naval Station. That's
	14	the outside part, but the inside part is the
	15	city's. We'll have to come back and involve the
	16	city. It's not just the Navy, but right now the
	17	Navy is the only one that's working with the Water
	18	Board to try to establish that. I don't know if
	19	you guys are interested in that or anything else
	20	that comes up.
	21	Okay. You're free to go. Thank you
	22	for listening.
	23	
	24	(Whereupon at 7:55 p.m. the meeting

was adjourned.)

25

1	STATE OF CALIFORNIA)
2	: ss
3	COUNTY OF SAN DIEGO)
4	
5	I, Nancy A. Lee, CSR No. 3870, do hereby
6	certify that I reported in shorthand the above
7	proceedings on Wednesday, January 29, 2003, at
8	Anchors & Spurs, 2245 Division Street, City of
9	National City, County of San Diego, State of
10	California; and I do further certify that the
11	above and foregoing pages numbered 1 to 87,
12	inclusive, contain a true and correct transcript
13	of all of said proceedings.
14	Dated:, 2003.
15	
16	
17	
18	
19	
20	NANCY A. LEE
21	
22	
23	
24	
25	